The Physiology of Dementia: Network reorganisation in progressive non-fluent aphasia as a model of neurodegeneration

Thomas Edmund Cope, Apollo-University Of Cambridge Repository, Apollo-University Of Cambridge Repository, James Benedict Rowe, Matthew H Davis
2018
The dementias are persistent or progressive disorders affecting more than one cognitive domain that interfere with an individual's ability to function at work or home, and represent a decline from a previous level of function. In this thesis I consider the neurophysiology of dementia at a number of levels. I investigate the ways in which the connectivity and function of the brain predisposes to the specific focal patterns of neurodegeneration seen in the various dementias. I aim to identify the
more » ... mesoscopic changes that occur in individuals with neurodegeneration and how these relate to their cognitive difficulties. I show how, by assessing patients in whom there is focal disruption of brain networks and observing the outcomes in comparison to controls, I can gain insight into the mechanisms by which the normal brain makes predictions and processes language. In Chapter 1, I set the scene for the focussed experimental investigations of model diseases by beginning with an introductory, clinically-focussed review that sets out the features, aetiology, management, epidemiology and prognosis of the dementias. This places these model diseases in the context of the broader clinical challenge posed by the dementias. In Chapter 2, I turn to 'prototypical' model diseases that represent neurodegenerative tauopathies with predominantly cortical (Alzheimer's disease, AD) and subcortical (Progressive Supranuclear Palsy, PSP) disease burdens. I investigate the neurophysiological causes and consequences of Tau accumulation by combining graph theoretical analyses of resting state functional MR imaging and in vivo 'Tau' PET imaging using the ligand AV-1451. By relating Tau distribution to the functional connectome I provide in vivo evidence consistent with 'prion-like' trans-neuronal spread of Tau in AD but not PSP. This provides important validation of disease modification strategies that aim to halt or slow down the progression of AD by sequestration of pathological Tau in the synapse. In contrast, I demonstrate associations consi [...]
doi:10.17863/cam.23156 fatcat:jqcxjjrypnhr7lo45jmluc6yii