A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Mapping properties for convolutions involving hypergeometric functions
2003
International Journal of Mathematics and Mathematical Sciences
Forμ≥0, we consider a linear operatorLμ:A→Adefined by the convolutionfμ∗f, wherefμ=(1−μ)z2F1(a,b,c;z)+μz(z2F1(a,b,c;z))′. Letφ∗(A,B)denote the class of normalized functionsfwhich are analytic in the open unit disk and satisfy the conditionzf′/f≺(1+Az)/1+Bz,−1≤A<B≤1, and letRη(β)denote the class of normalized analytic functionsffor which there exits a numberη∈(−π/2,π/2)such thatRe(eiη(f′(z)−β))>0,(β<1). The main object of this paper is to establish the connection betweenRη(β)andφ∗(A,B)involving
doi:10.1155/s0161171203203021
fatcat:6njcuap6uncidexeava7r52uqi