Mapping properties for convolutions involving hypergeometric functions

J. A Kim, K. H. Shon
2003 International Journal of Mathematics and Mathematical Sciences  
Forμ≥0, we consider a linear operatorLμ:A→Adefined by the convolutionfμ∗f, wherefμ=(1−μ)z2F1(a,b,c;z)+μz(z2F1(a,b,c;z))′. Letφ∗(A,B)denote the class of normalized functionsfwhich are analytic in the open unit disk and satisfy the conditionzf′/f≺(1+Az)/1+Bz,−1≤A<B≤1, and letRη(β)denote the class of normalized analytic functionsffor which there exits a numberη∈(−π/2,π/2)such thatRe(eiη(f′(z)−β))>0,(β<1). The main object of this paper is to establish the connection betweenRη(β)andφ∗(A,B)involving
more » ... he operatorLμ(f). Furthermore, we treat the convolutionI=∫0z(fμ(t)/t)dt ∗f(z)forf∈Rη(β).
doi:10.1155/s0161171203203021 fatcat:6njcuap6uncidexeava7r52uqi