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Abstract— This paper studies the problem of searching for an
unknown moving target in a bounded two-dimensional convex
area with a mobile robot. A key component of designing a
search strategy is the target motion model, which is often un-
known in practical scenarios. When designing search strategies,
researchers either (1) ignore the target motion and treat the
target as a stationary object with unknown location, (2) treat
the target as an adversary and model the search task as a
game, or (3) use a stochastic model such as a random walk.
For each of these models we analyze possible search paths with
the objective of minimizing the expected capture time. Our
intent is to investigate how the choice of the model influences
the choice of the strategy and consequently how the capture
time will depend on this choice. In addition to a theoretical
analysis, we compare the strategies in simulation.

I. INTRODUCTION

Search problems are fundamental in robotics. Finding a
target of unknown location in a given environment is a crucial
task in many scenarios, such as finding victims in disaster
areas, searching for intruders in restricted zones, tracking
animals for conservation programs and so on. In many of
these cases, not only the location of the target, but also its
motion can be unknown to the searcher and a model has to be
adopted. This makes the task of designing optimal strategies
with the goal to reduce the time of finding the target even
more challenging. A viable approach for this problem is to
treat the target as an adversary which actively plans its path in
order to avoid the searcher. Even though this scenario is not
always realistic, it can provide a useful worst-case scenario
for the original problem. On the other hand, this strategy
can be very conservative and, depending on the capabilities
of the target, an optimal strategy which assures capture may
not exist. Furthermore, in some cases where the target is
clearly non-adversarial, reasonable probabilistic models for
the target’s motion law can be considered. In this way, a more
efficient strategy can be designed and the expected capture
time can be significantly reduced. With this formulation, the
problem is referred to as one-sided probabilistic search for a
mobile target, where the target cannot observe the searcher
and does not actively evade detection [7].

In our previous works [19], [16] we studied the prob-
lem of finding a target moving as a random walk in a
one-dimensional environment. We approached the problem
both with an analytical analysis for an energy-constrained
searcher [19] and by formulating the problem as a Partially
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Observable Markov Decision Process (POMDP) considering
a limited time window for the search [16]. In these works we
showed how, without knowing the target’s position and with-
out sensing it until the capture, the probabilistic information
can be exploited to design optimal paths which significantly
outperform standard searching strategies.

In this paper, we extend this analysis to two-dimensional
environments, which are more common in real-world ap-
plications. To simplify the analysis, we focus our attention
on square environments, even though most of the presented
results can be easily extended to any convex domain. We
consider three possible ways of modeling the target’s motion:
stationary, adversarial and random walk motion.

Our contributions are as follows: We present a review of
existing results in search problems and propose new strate-
gies for various target models. For the adversarial case, the
corresponding game is known as the Princess-and-Monster
Game. This game was proposed by Isaacs [12] and solved
by Gal [10]. We present an adaptation of Gal’s strategy to
square environments which is simple to analyze. In the case
of a target moving as a random walk, we show how the
probabilistic information can be used to design an adaptive
search path. We also discuss the choice of possible searcher
strategies in terms of expected energy required to accomplish
the mission. Indeed, because of the diffusive properties of a
random-walking target, the searcher can consider staying in
a fixed location as a viable option. Finally, focusing on the
case of a random walking target, we test and compare in sim-
ulation the performance of the proposed strategies in terms
of mean capture time and capture probability. Even though
the optimal search strategy for finding a two-dimensional
random walker is still an open problem, simulations allow
us to identify search strategies whose performance is close
to known bounds. By simulating the search process, we also
provide a comparison between stationary and moving search
strategies, assuming that stay and move actions correspond
to different energy costs.

The rest of the paper is organized as follows. We present
an overview of related work in Section II. The search
problems we aim to study are formalized in Section III.
The capture strategies for various models are presented and
discussed in Section IV, and the analysis of the capture prob-
abilities in simulation is provided in Section V. Finally, we
present concluding remarks and future work in Section VI.

II. RELATED WORK

Due to its great relevance in robotics applications, optimal
search problems have been widely studied in past years. A



recent survey on results in autonomous search and pursuit-
evasion problems, with a particular focus on applications
in mobile robotic systems, can be found in [7]. In [8], the
authors provide a probabilistic formulation for the search
problem where a mobile searching agent seeks to locate a
stationary target in a given search region or declare that the
target is absent.

A possible POMDP-based solution for the problem of
optimal searching for a non-adversarial target in an indoor
environment by using a team of robots has been recently
presented by Hollinger et al. in [11]. The authors assume
to know the environment and choose searcher paths most
likely to intersect with the path taken by the target. In this
case the target’s motion model is assumed to be known to
the searcher.

Random motions, both as discrete random walks and
continuous diffusive motions, have been extensively studied
as models of animal motion or complex physical processes
[13], [5]. In particular they are widely used in the literature
to simplify pursuit-evasion games and absorption (or search)
processes. A large number of interesting properties closely
related to searching missions are collected in [17] including:
first passage probability (the probability for the random
walker of visiting for the first time a given point at a given
time), survival probability (the probability that the random
walk has not been found at a given time) and mean capture
time (the expected time to be found). Various characteristics
of random walks in general graphs have been studied in [15].
Examples are hitting time, which is the expected number of
steps before a node is visited, and cover time, which is the
expected number of steps to visit every node at least once.
The survival probability of a particle that performs a random
walk on a chain where traps are uniformly distributed with
known concentration is studied in [3] and an asymptotically
exact solution is provided. A similar problem, but in a grid
with a single trap is studied in [21]. In [18], the authors study
the survival probability of a prey on a line which is chased by
more than one diffusive predator. The same problem but in a
semi-infinite line where the boundary represents a haven for
the prey is presented in [9]. Finally, in [14] the expected time
required for capturing an adversarial robber and the random
walk one is compared. Upper and lower bounds are derived
for the ratio between these two values when the search is
done on special graph structures.

The pursuit-evasion game corresponding to the adversarial
version is known as the Princess and Monster Game. In
this game, the players are in a dark room (i.e. they can not
observe each other unless the monster captures the princess.)
This game was proposed by Isaacs [12] and solved by
Gal [10] who presented a randomized strategy to find the
evader in time proportional to the area of the environment.
In Section IV-B, we present an adaptation of this strategy
for square environment which yields a simplified analysis.
When the game takes place on a graph, it is known as the
hunter and rabbit game. Adler et al. showed that the hunter
can capture the rabbit in O(N logN) time in a graph with N
vertices [1].

Fig. 1. Two ASVs used for the fish tracking project which motivates this
work.

III. PROBLEM FORMULATION

Let Ω be a planar bounded domain in which a target
and a searcher can move. For simplicity we assume the
environment to be a square of side L. Let the target’s
initial location x0 ∈ Ω be chosen according to a probability
distribution P0. The searcher has a limited sensing range Rs,
which we assume to be Rs ≪ L. The detection of the target,
or capture, will happen when

∥xt − st∥< Rs , (1)

where ∥·∥ represents the standard Euclidean norm and xt , st
are the target and searcher positions at time t respectively.
The searcher can move within the search space with a
velocity v. By choosing appropriate units, this quantity can
be taken to be one. The objective is to design a searcher
strategy which minimizes the expected capture time.

The first fundamental step in order to design an optimal
search strategy is to model the target motion. In fact, in many
practical cases where a searcher is called to find a target, not
only the position of the target is unknown but also its motion
law. For this reason, a good approximate model is crucial to
design a customized strategy which can exploit the available
information.

In this paper, we consider different possible motion mod-
els and we study the effect that they have on the search
strategy and on the expected capture time. In particular,
the three different models for the target’s motion we take
into consideration are the following: 1) Stationary target;
2) Adversarial target; 3) Random moving target. All these
models reflect general properties of the target and do not
require a perfect knowledge of its characteristics. However,
as we will show, they still contain important information for
the searcher. These cases will be analyzed in detail in the
following section.

This search problem has been inspired by our ongoing
work on finding radio-tagged invasive fish in inland wa-
ters [20]. The task is carried out by using an Autonomous
Surface Vehicle (ASV) equipped with antenna (see Fig. 1).
In this application, no reliable motion model for the target
(fish, in our case) is available. In fact, one of the final goals
of this project is to provide tools for biologists to develop a
motion model.



IV. SEARCH STRATEGIES

In this section we describe three different models for the
target motion, which are analyzed separately. For each of
them we then propose possible search strategies, discuss their
properties and analyze expected capture time.

A. Stationary Target

A first possibility to model the target’s motion is to assume
that it is stationary. In our motivating problem, where the
target is represented by a fish, this case is verified especially
during the winter. Indeed, it has been observed that, during
the winter months, these fish tend to aggregate and it is
common to find them in large groups which remain stationary
for many days [4]. If no information is available on the
initial location of the target, an optimal search strategy is
trivially represented by a deterministic precomputed path
which covers the entire environment without revisiting any
location. A classical example is the boustrophedon cellular
decomposition [6]. For a square environment we can dis-
cretize Ω along the y-axis in L̂ uniform rows, such that the
distance between consecutive rows is equal to the sensing
radius Rs. Then, the capture time will be at most L̂L and L̂L

2
on average.

On the other hand, if the searcher has a non-uniform prob-
ability distribution for the target’s initial location, different,
more efficient strategies can be implemented and a wide
literature is present on this subject (see Section II).

B. Adversarial Target

Another important model for the target’s motion is to treat
it as an adversary which actively tries to avoid the searcher.
This could be possible assuming that the target is aware of
the search strategy and it can plan the best possible strategy
to escape capture by the searcher. Even though a perfectly
adversarial target is unlikely in many real-world applications,
this analysis remains very important because it can represent
a worst case scenario. Indeed, a search strategy with capture
(if it exists) guarantees the existence of a finite capture time
for all possible trajectories of the target.

We now present a search strategy for capturing an adver-
sarial target in the square environment Ω. If the target has
a longer sensing range than the searcher it can easily avoid
capture. Therefore, we assume that the players have the same
sensing range Rs and so they do not observe each other until
capture.

The optimal search strategy for this game is presented
in [10]. We present here an adaptation of this strategy which
yields a simple analysis in square environments. Let us
consider the same discretization along the y-axis previously
introduced. Therefore, we will have L̂ = O(L) rows. The
search strategy is divided into rounds. Each round has two
parts which take exactly L steps. The searcher starts on the
left boundary of the environment. At the beginning of each
round, a row is randomly selected with a uniform distribution
and the searcher travels to this row and waits until the end of
the first part. In the second part, it sweeps the entire selected
row. The searcher repeats this strategy until a capture occurs.

The capture probability of this strategy is computed as
follows. We associate a “virtual searcher” with each random
choice of row. At each round, only one virtual searcher is
instantiated (i.e. it corresponds to the physical searcher).
Hence, there are L̂ − 1 virtual searchers. Every searcher
occupies a different row and starts sweeping its row at the
same time. In this way, the sensing areas of the all L̂− 1
virtual searchers and the real one create a continuous frontier
which entirely sweeps the environment along the x axis.
Regardless of the target’s trajectory, at a given time the target
will hit this frontier. As a result, one searcher among this
virtual team will capture the target at every round. Note that
the equal sensing range assumption implies that the target can
not differentiate among virtual searchers choices and infer
which virtual searcher is active.

The probability that such a capture happens on the row
occupied by the real searcher is 1/L̂. The number of rounds
before having a capture is geometrically distributed. Its
expected value is equal to L̂. Since each round lasts 2L steps,
the expected capture time is

2LL̂ = O(A) , (2)

where A is the area of Ω. It is worth mentioning that no
assumptions on the players’ velocity were necessary in our
analysis, and the same result holds also for a target which
can move faster than the searcher.

This strategy is asymptotically optimal because by simply
staying put at a randomly chosen location, the target can
guarantee O(A) capture time. A tighter analysis based on an
improved evader strategy can be found in [10].

C. Random Motion Model

A third option to model the target’s motion is a stochastic
motion law. In many cases, even though the target’s exact
motion is unknown, it is still possible to approximate the
motion of the target using probabilistic laws. For example,
the movement of some animals can be approximated by
stochastic models [13], [5].

In this paper we focus our attention on the random
walk motion. Our aim is to show that even this partial
probabilistic information about the target’s motion and its
expected behavior can be exploited to significantly improve
the search strategies. In particular, we analyze two main ways
to take advantage of the available information: employing a
stationary searcher and designing adaptive strategies based
on the belief of the target’s position.

In order to proceed with the analysis of the stochastic
motion model, we discretize the environment and describe
the discrete process on a grid in the following way. Let
the space Ω be represented by a grid G = (V,E) composed
of N nodes and consider a simple random walk on G.
Let x0 be the initial location of the random walk, which
is completely unknown or follows a given non-uniform
probability distribution. At the t-th time step let 1/d(xt) be
the probability to move from the current location xt to one
of the neighbors, where d(i) is the degree of the node i. The



sequence of random nodes xt , t = 1,2, ... is a Markov chain.
We then denote with Pt the distribution of xt

Pt(i) = Prob(xt = i) . (3)

Denoting by M = (pi j)i, j∈V the matrix of transition proba-
bilities for the Markov chain, we have:

pi j =

{

1
d(i) if i j ∈ E

0 otherwise .
(4)

Before we present the two strategies, an important result
on this problem that we want to report is the lower bound on
the expected capture time ⟨T ⟩, which has been presented by
Kehagias et al. in [14]. This result, which holds for a general
graph composed of N nodes, with a maximum degree ∆, a
minimum degree δ and such that ∆

δ (N−1) ≤
1
24 states that:

⟨T ⟩ ≥
δ (N −1)

7e∆
. (5)

For a square grid, this expression becomes:

⟨T ⟩ ≥
N −1
14e

. (6)

1) Stationary Searcher: A first important consequence
of assuming the target as non-adversarial is that a viable
strategy can be to just wait for it. In particular, if we consider
valid the hypothesis that the target moves as a random
walk in a bounded environment, we know that eventually
it will visit every point in the search space with probability
one. Two results already known in literature are particularly
interesting for our analysis: given a random walk on a
bounded two-dimensional grid composed of N nodes, i)
defining the hitting time h(i, j) as the expected time for a
random walk starting at i to arrive to j for the first time,
the maximum hitting time hmax over all the pairs (i, j) is
Θ(N logN); ii) the cover time, defined as the expected time
to visit every node in the grid is Θ(N log2 N). See [15], [2]
for more details.

Even though this expected time can seem very large
compared with more efficient dynamic strategies, a stationary
searcher can still be an interesting solution in some cases.
One of them could be the case of a searcher with a limited
energy budget: assuming that usually sensing without moving
is significantly less costly than continuously moving, if the
initial energy does not allow the searcher to explore an
important part of the environment, a more efficient solution
can be to employ the available amount of energy to sense in a
fixed location. In Section V we will analyze in a quantitative
way this aspect.

Furthermore, this kind of knowledge about the target
model, can also allow employing one, or more, static sensors
distributed over the environment, instead of a more expensive
mobile robot.

2) Adaptive Searcher: An alternative way to exploit the
probabilistic information about the target is to update a
probabilistic belief function of the target’s position during the
search and to use it to construct adaptive strategies. In this

way it is also easy to incorporate possible a priori information
about the initial position of the target.

The strategy we propose is to update the belief over the
entire grid. For each node, we add the probabilities of its
neighbors weighted by the transition probability given in
eq. (4). We then move toward the global maximum of this
function. The drawback of this kind of strategy is that it can
be very computationally expensive for large environments.
This drawback can be mitigated by computing the search
path in advance for a given initial distribution and search
time.

We have also considered a simple greedy strategy, where at
each step the best node among the neighbors is selected. We
observed that it is very sensitive to local minimum problems
and get stuck (e.g. along the boundary) easily. As a result,
we have decided that it is not a promising search strategy.

It is important to mention that these strategies are not
the solutions of the optimization problem of minimizing
the expected capture time (or related problems such as
maximizing the capture probability in a given time), which
is an open problem.

V. SIMULATION RESULTS

In this section we focus our attention on the random mov-
ing target and we study in simulation the strategies discussed
in Section IV. Specifically, the considered strategies are: 1)
Simple random walk; 2) Boustrophedon path; 3) Adversarial-
based path; 4) Random direction; 5) Belief-based path.

Our intent is to investigate the behavior of the mean cap-
ture time for these strategies as a function of the environment
size. For our study we consider a square grid composed
of N nodes, on which searcher and target can move. The
target’s initial location is fixed randomly, assuming a uniform
probability distribution over the N nodes. The searcher starts
from the point s0 = (1,1). The sensing radius Rs is fixed to
1, which means that the searcher can also sense its four
neighbors. Searcher and target move at the same velocity,
which is assumed to be unitary.

In the first strategy the searcher moves in the same way as
the target, with the same probabilities at each time step. The
adversarial-based path is the strategy described in Section IV-
B. In the random direction, the searcher picks a random,
uniformly-distributed point on the boundary, it reaches it
and repeats this process. In the belief-based strategy, at
each iteration the maximum of the belief is identified and
the searcher goes toward its direction. Fig. 2 shows the
simulation results, where the numerical values for each
strategy have been obtained as an average over 104 trials.

It is not surprising that the best performance is achieved
by using the belief function to design an adaptive strategy.
However, it is interesting to note that its performance is
still close to the one corresponding to randomized strategies,
i.e. adversarial-based and random direction. In particular, on
average, the adversarial-based strategy is able to catch the
target in a time 20% higher than the belief-based one. It
is worth noting that these two non-adaptive random-based
strategies, for this case with a randomly moving target,
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Fig. 2. Behavior of the mean capture time as a function of the number
of nodes N. This plot shows five different searcher strategies: moving
as a random walk, boustrophedon path, the random strategy presented in
Section IV-B and the adaptive strategy based on the belief function. The
sensing radius Rs is fixed to 1.
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Fig. 3. Belief-based search path: at each time step, the searcher moves
toward the global maximum of the updated belief of the target’s location.
The red square represents the initial position, the green circle the final one.

achieve a better result than the boustrophedon path. This
phenomenon can be explained as follows: when the searcher
sweeps an entire row without finding the target, the value of
the belief drops also on the adjacent rows. Thus, instead
of passing to sweep the following row, a higher capture
probability can be obtained exploring more distant regions.

Another important remark is that the last four strategies
show a mean capture time linear in the number of nodes N,
but searching as a random walk requires a time more than
linear. This fact can be easily explained because in this case
the global system, searcher plus target, is still a random walk,
with a different diffusive law. As a result, an analysis similar
to the one presented for a stationary searcher can be applied
and even if the expected capture time for this case is lower,
the behavior is always more than linear in N.

In Fig. 3 is shown an example of a belief-based search
path in a square environment of side

√
N = 40. It is possible

to see that the searcher always avoids the boundaries of the
environment. This is due to the lower degree of the boundary
nodes, and so also the lower probability to find the target.

An aspect that is worth considering is the robustness of this
belief-based strategy with respect to changes in the expected
target motion, i.e. when the random walk probabilities are
different from the ones used to update the belief. This
situation reflects a very realistic scenario, where the target
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Fig. 4. Behavior of the capture probability in function of time with w = 0
(a) and 0.2 (b).

does not behave exactly as the model adopted but only close
to it. The results of this analysis, now in terms of capture
probabilities as a function of time, for a searcher moving in
a square of side L = 50, are reported in Fig. 4. The belief-
based strategy is obtained considered the simple random
walk as described in eq. 4, but now the target can also have
a non-zero probability of maintaining is position using the
transition probabilities:

pi j =

⎧

⎪

⎨

⎪

⎩

w if i = j ∈ E
1−w
d(i) if i j ∈ E

0 otherwise ,

(7)

where w = 0,0.2 in Fig. 4(a), (b) respectively. These results
show that, even though the belief-based strategy achieves the
best result, starting from a uniform probability distribution
for the initial target’s location for a perfect simple random
walk motion, the gain with respect to randomized strategies
is lost as soon as a slight modification in the transition
probabilities is present.

Finally, we want also to compare in simulation the per-
formance of a stationary searcher with respect to a moving
strategy. As stated in the analysis presented in the previous
section, the expected time for the target to hit a stationary
searcher is Θ(N logN). On the other hand, for a searcher
adopting a moving strategy such as the adversarial-based or
the belief-based, we expect that the time drops to Θ(N). This
was proven for the adversarial-based strategy in Section IV-B
and confirmed for both strategies in simulation (Fig. 2). To
verify this different behavior as a function of the number of
nodes N between a stationary searcher and the belief-based
strategy, we consider the ratio:

Tstationary

Tbelief logN
, (8)
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Fig. 5. Behavior of
Tstationary

Tbelief logN as a function of N, where Tstationary and
Tbelief represent the mean capture time for stationary searcher and belief-
based strategy respectively.

where Tx represents the mean capture time for the x strategy.
We expect this ratio to be a constant value K as a function of
N. The result is shown in Fig. 5. It is possible to see that the
attended behavior is verified and in particular, for our case,
we have K ∼ 2.4. This result is particularly interesting, not
only to confirm the theoretical behavior, but also to obtain
a quantitative comparison between the two strategies. As
mentioned in the previous section, this could be important for
a limited-energy search mission. For instance, in this case,
if the cost of completing a move action cm compared with
the cost of sensing keeping the position cs verifies

cm ≫ cs K log(N) (9)

from an energetic point of view, it would be more efficient
to wait for the target instead of moving to search for it.
However, it is important to note that this result can strongly
depend on the real target’s motion. If it does not present all
the characteristics of a random walk (for example if a strong
bias is present) the eventual capture could not be assured.

VI. CONCLUSION

In this paper we studied how the choice of target model
affects the strategy of a mobile searcher which tries to mini-
mize the time of capture. We considered three target models:
stationary target, adversarial target and target moving as a
random walk. The objective was to provide a review of
existing results in the field, adapting some of them to our
particular case, and present possible strategies for the target
models. In the case of a random-walking target, we also
present a comparison in simulation of viable search paths.
Our results show that when searching for a random-walker,
an effective strategy is to maintain a distribution of the
target locations and to move toward the maximum of this
distribution. However, this strategy is sensitive to errors in
the target motion model. Randomized (adversarial) strategies
achieve a performance close to that of a belief-based strategy.
Since they are agnostic to the target model, they provide
viable general search strategies.

Finally we proposed an analysis of this case also from an
energy point of view, considering the case of a stationary
target and comparing it with a moving strategy.

As future work, we aim to further investigate the problem
of a randomly moving target from an energy point of view.

Assuming a limited energy budget for the searcher and
different costs for stay and moving actions, as in [19], our
intent is to try to design efficient strategies which combine
the exploration and stationary modes in order to increase the
capture probability. Another possible research line is to study
the effects of a different stochastic motion law for the target.
An interesting alternative to the random walk model is that
represented by Levy flights.
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