A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
On the Use of Different Feature Extraction Methods for Linear and Non Linear kernels
[article]
2014
arXiv
pre-print
The speech feature extraction has been a key focus in robust speech recognition research; it significantly affects the recognition performance. In this paper, we first study a set of different features extraction methods such as linear predictive coding (LPC), mel frequency cepstral coefficient (MFCC) and perceptual linear prediction (PLP) with several features normalization techniques like rasta filtering and cepstral mean subtraction (CMS). Based on this, a comparative evaluation of these
arXiv:1406.7314v1
fatcat:syiy6p3klfepvakmd2hp6zgd6q