A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
LMC and SDL Complexity Measures: A Tool to Explore Time Series
2019
Complexity
This work is a generalization of the López-Ruiz, Mancini, and Calbet (LMC) and Shiner, Davison, and Landsberg (SDL) complexity measures, considering that the state of a system or process is represented by a continuous temporal series of a dynamical variable. As the two complexity measures are based on the calculation of informational entropy, an equivalent information source is defined by using partitions of the dynamical variable range. During the time intervals, the information associated
doi:10.1155/2019/2095063
fatcat:3cwtw3qarncdxlfd6h2m3hecf4