QUANTIFY: A framework for resource analysis and design verification of quantum circuits [article]

Oumarou Oumarou, Alexandru Paler, Robert Basmadjian
2020 arXiv   pre-print
Quantum resource analysis is crucial for designing quantum circuits as well as assessing the viability of arbitrary (error-corrected) quantum computations. To this end, we introduce QUANTIFY, which is an open-source framework for the quantitative analysis of quantum circuits. It is based on Google Cirq and is developed with Clifford+T circuits in mind, and it includes the necessary methods to handle Toffoli+H and more generalised controlled quantum gates, too. Key features of QUANTIFY include:
more » ... 1) analysis and optimisation methods which are compatible with the surface code, (2) choice between different automated (mixed polarity) Toffoli gate decompositions, (3) semi-automatic quantum circuit rewriting and quantum gate insertion methods that take into account known gate commutation rules, and (4) novel optimiser types that can be combined with different verification methods (e.g. truth table or circuit invariants like number of wires). For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits. Experimental results show that the framework's performance scales to circuits with thousands of qubits.
arXiv:2007.10893v1 fatcat:n6klug22cnds5a5wpk2rq3gmhu