Features for Ground Texture Based Localization – A Survey [article]

Jan Fabian Schmid, Stephan F. Simon, Rudolf Mester
<span title="2020-03-03">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Ground texture based vehicle localization using feature-based methods is a promising approach to achieve infrastructure-free high-accuracy localization. In this paper, we provide the first extensive evaluation of available feature extraction methods for this task, using separately taken image pairs as well as synthetic transformations. We identify AKAZE, SURF and CenSurE as best performing keypoint detectors, and find pairings of CenSurE with the ORB, BRIEF and LATCH feature descriptors to
more &raquo; ... ve greatest success rates for incremental localization, while SIFT stands out when considering severe synthetic transformations as they might occur during absolute localization.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2002.11948v2">arXiv:2002.11948v2</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/7fwoqfboongwlcrhlt2tmrhevu">fatcat:7fwoqfboongwlcrhlt2tmrhevu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200322203040/https://arxiv.org/pdf/2002.11948v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2002.11948v2" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>