Semantic Interaction for Visual Analytics: Inferring Analytical Reasoning for Model Steering

Alex Endert
<span title="2016-09-13">2016</span> <i title="Morgan &amp; Claypool Publishers LLC"> <a target="_blank" rel="noopener" href="" style="color: black;">Synthesis Lectures on Visualization</a> </i> &nbsp;
User interaction in visual analytic systems is critical to enabling visual data exploration. Through interacting with visualizations, users engage in sensemaking, a process of developing and understanding relationships within datasets through foraging and synthesis. For example, two-dimensional layouts of high-dimensional data can be
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.2200/s00730ed1v01y201608vis007</a> <a target="_blank" rel="external noopener" href="">fatcat:agf3nmicbveftgdixq6vjblj6e</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / </button> </a>