A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Encoder-Decoder Architecture for Supervised Dynamic Graph Learning: A Survey
[article]
2022
arXiv
pre-print
In recent years, the prevalent online services generate a sheer volume of user activity data. Service providers collect these data in order to perform client behavior analysis, and offer better and more customized services. Majority of these data can be modeled and stored as graph, such as the social graph in Facebook, user-video interaction graph in Youtube. These graphs need to evolve over time to capture the dynamics in the real world, leading to the invention of dynamic graphs. However, the
arXiv:2203.10480v2
fatcat:tf7n73rhtbbcpptbn6lyvhcew4