A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
A convergence result for evolutionary variational inequalities and applications to antiplane frictional contact problems
2004
Applicationes Mathematicae
We consider a class of evolutionary variational inequalities depending on a parameter, the so-called viscosity. We recall existence and uniqueness results, both in the viscous and inviscid case. Then we prove that the solution of the inequality involving viscosity converges to the solution of the corresponding inviscid problem as the viscosity converges to zero. Finally, we apply these abstract results in the study of two antiplane quasistatic frictional contact problems with viscoelastic and
doi:10.4064/am31-1-5
fatcat:an3oeslxnvb6bfgtiy3pxjfhwm