A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Crystalline Silicon Solar Cell Engineering to Improve Fill Factor, Open Circuit Voltage, Short Circuit Current and Overall Cell Efficiency
2014
MODARES JOURNAL OF ELECTRICAL ENGINEERING
unpublished
Design and optimization of a single crystalline silicon (c-Si) solar cell is performed to achieve the maximum light conversion efficiency. Various parameters such as doping concentration and thicknesses, and geometrical dimension of surface pyramids are studied. The inverted surface pyramid is used to increase the efficiency of the solar cell, and engineered oxide layer is used as the passivation and anti-reflect layer. Semi-analytic modeling of the output parameters of the solar cell, and
fatcat:qpko2wax3rervmbs3ezkuzyt54