A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Robust Variable Selection Based on Relaxed Lad Lasso
2022
Symmetry
Least absolute deviation is proposed as a robust estimator to solve the problem when the error has an asymmetric heavy-tailed distribution or outliers. In order to be insensitive to the above situation and select the truly important variables from a large number of predictors in the linear regression, this paper introduces a two-stage variable selection method named relaxed lad lasso, which enables the model to obtain robust sparse solutions in the presence of outliers or heavy-tailed errors by
doi:10.3390/sym14102161
fatcat:7ac4tsfutbgsxh4v2xwepcsjyy