Bioelectrical Impedance Analysis Versus Quantitative Computer Tomography and Anthropometry for The Assessment of Body Composition Parameters in China [post]

Qian Qin, Yang Yang, Jingfeng Chen, Yaojun Jiang, Ang Li, Meng Huang, Yihan Dong, Shoujun Wang, Suying Ding
2020 unpublished
Objectives: The study evaluated the bioelectrical impedance analysis (BIA) device against the body composition parameters measured by anthropometry and quantitative computer tomography (QCT) to assess its reliability and accuracy among Chinese adults.Methods: Body composition parameters (waist circumstance [WC], body weight, body mass index [BMI] and visceral fat area [VFA]) were measured in 1,379 subjects (20-81 years old), both manually and by BIA, and in 1,317 of 1,379 subjects by QCT. The
more » ... rrelation coefficients were calculated between these measurements. Linear regression models were used to estimate each parameter based on the BIA measurements. Multivariate linear regression models were applied to calculate the correlation among VFA, WC and BMI. The concordance correlation coefficient from the Bland-Altman plots were calculated for VFA between QCT and BIA. Results: High correlation was observed for WC, weight and BMI (adjusted R2=0.78, 0.99 and 0.99) between BIA and anthropometry, and for VFA between BIA and QCT in both sex (adjusted R2=0.549 and 0.462). The multivariate regression models were established for the accurate prediction of QCT-VFA using WC and BMI (adjusted R2=0.603). In addition, a strong consistency of VFA measurement was found between BIA and QCT.Conclusion: Body composition parameters could be accurately determined in clinic using simple measurements of BIA. WC is more reliable as a predictor of visceral fat in the metabolic syndrome. Being non-invasive, accurate and free of radiation, BIA can be used as a safe and convenient tool in scientific research and clinical practice for the quick measurement of anthropometric parameters.
doi:10.21203/rs.3.rs-109288/v1 fatcat:3t2u7466krawbfc2hqvndakl6a