Spectral and duration sensitivity to light-at-night in 'blind' and sighted rodent species

A. E. Zubidat, R. J. Nelson, A. Haim
2011 Journal of Experimental Biology  
Light-at-night (LAN) has become a defining feature of human and animal ecosystems and may possibly compromise human and animal physiology and health. Spectral and acclimation duration (AD) sensitivity were compared between social voles (Microtus socialis) and 'blind' mole rats (Spalax ehrenbergi) in four increasing ADs (0, 1, 7 and 21days) to LAN (1ϫ30min, 293Wcm -2 ) of three different monochromatic lights [blue (479nm), yellow (586nm) and red (697nm)]. Animals were sampled for urine
more » ... d oxygen consumption (V O2 ) promptly after each LAN-AD. Urine samples were analyzed for production rate, urinary 6sulfatoxymelatonin and urinary metabolites of adrenalin and cortisol. Overall, the blue light elicited the greatest effects on the biological markers of M. socialis, whereas similar effects were detected for S. ehrenbergi in response to red light. The increasing LAN-AD resulted in a dose-dependent decrement of all markers tested, except of stress hormones, which showed a direct positive correlation with LAN-AD. Our results suggest that: (1) photoperiod is an important cue for entraining physiological functions in the 'blind' S. ehrenbergi, which is essentially characterized by red-shifted sensitivity compared with the blue-shifted sensitivity detected for the sighted counterpart species, and (2) there is a strong association between LAN of the appropriate wavelength and adrenal endocrine responses, suggesting that LAN is a potential environmental stressor. Supplementary material available online at
doi:10.1242/jeb.058883 pmid:21900468 fatcat:ldikitue4nhlvjqx6slhm4lxbm