Scalable Machine Learning for Visual Data

Xinnan Yu
Recent years have seen a rapid growth of visual data produced by social media, large-scale surveillance cameras, biometrics sensors, and mass media content providers. The unprecedented availability of visual data calls for machine learning methods that are effective and efficient for such large-scale settings. The input of any machine learning algorithm consists of data and supervision. In a large-scale setting, on the one hand, the data often comes with a large number of samples, each with
more » ... dimensionality. On the other hand, the unconstrained visual data requires a large amount of supervision to make machine learning methods effective. However, the supervised information is often limited and expensive to acquire. The above hinder the applicability of machine learning methods for large-scale visual data. In the thesis, we propose innovative approaches to scale up machine learning to address challenges arising from both the scale of the data and the limitation of the supervision. The methods are developed with a special focus on visual data, yet they are also widely applicable to other domains that require scalable machine learning methods. Learning with high-dimensionality: The "large-scale" of visual data comes not only from the number of samples but also from the dimensionality of the features. While a considerable amount of effort has been spent on making machine learning scalable for more samples, few approaches are addressing learning with high-dimensional data. In Part I, we propose an innovative solution for learning with very high-dimensional data. Specifically, we use a special structure, the circulant structure, to speed up linear projection, the most widely used operation in machine learning. The special structure dramatically improves the space complexity from quadratic to linear, and the computational complexity from quadratic to linearithmic in terms of the feature dimension. The proposed approach is successfully applied in various frameworks of large-scale visual data analys [...]
doi:10.7916/d8f47ndb fatcat:xde635kzfrdvdhvakf432yod54