Stretchable 3D cell laden hydrogel microarray platforms for combinatorial screening of cell mechanoresponses

Kabilan Sakthivel
2020
Cells in vivo are constantly subjected to multiple microenvironmental mechanical stimuli that regulate cell function. Although two-dimensional (2D) cell responses to the mechanical stimulation have been established; these methods lack relevance as physiological cell microenvironments are in three-dimensions (3D). Moreover, the existing platforms developed for studying the cell responses to mechanical cues in 3D either offer low throughput, involve complex fabrication, or do not allow the
more » ... torial analysis of multiple cues. Considering this, a stretchable high-throughput (HT) 3D gelatin methacryloyl (GelMA) microarray platform is presented that can apply dynamic mechanical strain to cells encapsulated in arrayed 3D microgels. The platform uses bioprinting methods such as inkjet and stereolithography (SLA) techniques for printing cell-laden GelMA microgel array on an elastic composite substrate that is periodically stretched. The developed platform is highly biocompatible and transfers the applied strain from the stretched substrate to the cells. The HT analysis is conducted to analyze cell mechano-responses throughout the printed microgel array. Also, different GelMA microenvironmental stiffnesses is provided in addition to the dynamic stretch by inkjet bioprinting different GelMA hydrogel concentrations on the same substrate for the combinatorial analysis of distinct cell behaviors. The composite substrate of the developed platform is also improved to make its surface cell adhesive hence allowing the platform suitable for either 2D, 3D, 2D/3D co-culture cell stretching studies or stretchable microfluidics. The improved substrate is combined with the SLA bioprinting process to print cell-laden GelMA hydrogels with various shapes/geometries for the combinatorial screening of the cell mechanoresponses to both 3D geometry and dynamic stretch. Considering its throughput and flexibility, the developed platform can readily be scaled up to introduce a wide range of microenvironmental cues and to screen the cell resp [...]
doi:10.14288/1.0394804 fatcat:okldnodkxjgedmyjupl3areuhm