CFD Simulation of the Airflow Distribution Inside Cube-Grow

Arina Mohd Noh, Hamdan Mohd Noor, Fauzan Ahmad
2021 CFD Letters  
Cube-Grow was developed by MARDI to promote urban agriculture to the urban population. The product enables urban people to grow their vegetables with limited space. The initial test run of the system shows that the plant growth inside the structure was below expectation. The problem arises due to a lack of airflow or improper ventilation inside the structure. Optimum ventilation or airflow is crucial for plant growth as it enhances evapotranspiration at the leaf area to promote optimum plant
more » ... wth. Therefore, this study aims to increase the airflow inside the Cube-Grow and find the best location for the air hole. Computational fluid dynamics (CFD) simulation was used in this study the analyse the effect of adding an air hole to the airflow characteristic inside the Cube-Grow. CFD also was used to select the best location to place the air hole. 3 option of air hole location was analysed and the results were compared with the existing design. The initial CFD simulation results were compared with the actual measurement data before it was used for further analysis. The result shows that adding an air hole increases overall airflow inside the Cube-Grow. Option 3 was chosen as the best location for the air hole as it produces a uniform and higher airflow inside the Cube-Grow. The study proved that CFD was able to be used to optimize the design of Cube-Grow before the actual prototype was built.
doi:10.37934/cfdl.13.12.8189 fatcat:4gflfwtjqzajnomaulmilcgkmq