Iterative Learning with Open-set Noisy Labels

Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Hongyuan Zha, Le Song, Shu-Tao Xia
2018 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition  
Large-scale datasets possessing clean label annotations are crucial for training Convolutional Neural Networks (CNNs). However, labeling large-scale data can be very costly and error-prone, and even high-quality datasets are likely to contain noisy (incorrect) labels. Existing works usually employ a closed-set assumption, whereby the samples associated with noisy labels possess a true class contained within the set of known classes in the training data. However, such an assumption is too
more » ... tive for many applications, since samples associated with noisy labels might in fact possess a true class that is not present in the training data. We refer to this more complex scenario as the open-set noisy label problem and show that it is nontrivial in order to make accurate predictions. To address this problem, we propose a novel iterative learning framework for training CNNs on datasets with open-set noisy labels. Our approach detects noisy labels and learns deep discriminative features in an iterative fashion. To benefit from the noisy label detection, we design a Siamese network to encourage clean labels and noisy labels to be dissimilar. A reweighting module is also applied to simultaneously emphasize the learning from clean labels and reduce the effect caused by noisy labels. Experiments on CIFAR-10, ImageNet and real-world noisy (web-search) datasets demonstrate that our proposed model can robustly train CNNs in the presence of a high proportion of open-set as well as closed-set noisy labels.
doi:10.1109/cvpr.2018.00906 dblp:conf/cvpr/WangLMBZSX18 fatcat:ys5xxa6jpvh2fi7evpwqvc77v4