A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Differential Privacy Principal Component Analysis for Support Vector Machines
2021
Security and Communication Networks
In big data era, massive and high-dimensional data is produced at all times, increasing the difficulty of analyzing and protecting data. In this paper, in order to realize dimensionality reduction and privacy protection of data, principal component analysis (PCA) and differential privacy (DP) are combined to handle these data. Moreover, support vector machine (SVM) is used to measure the availability of processed data in our paper. Specifically, we introduced differential privacy mechanisms at
doi:10.1155/2021/5542283
fatcat:rvjxzryvpja5zkjz2xyn3vayzq