
A GeoEvent-driven Architecture based on
GeoMQTT for the Geospatial IoT

Stefan Herlé

Veröffentlichung des Geodätischen Instituts der
Rheinisch-Westfälischen Technischen Hochschule Aachen

Mies-van-der-Rohe-Straße 1, 52074 Aachen

NR. 71

2019
ISSN 0515-0574

A GeoEvent-driven Architecture
based on GeoMQTT for the

Geospatial IoT

Von der Fakultät für Bauingenieurwesen der
Rheinisch-Westfälischen Technischen Hochschule Aachen zur

Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Stefan Herlé

Berichter:
Universitätsprofessor Dr.-Ing. Jörg Blankenbach

Universitätsprofessor Dr.-Ing. Ralf Bill

Tag der mündlichen Prüfung: 24.10.2019

Diese Dissertation ist auf den Internetseiten der
Hochschulbibliothek online verfügbar.

Veröffentlichung des Geodätischen Instituts der
Rheinisch-Westfälischen Technischen Hochschule Aachen

Mies-van-der-Rohe-Straße 1, 52074

Nr. 71

2019

ISSN 0515-0574

2

ACKNOWLEDGMENTS

I have written this thesis during my employment as a research associate at the
Geodetic Institute and Chair for Computing in Civil Engineering & Geo Information
Systems of RWTH Aachen University (gia). Over the years I have learned great deal,
had a lot fun and have been able to work in a very pleasant atmosphere.

First, I would like to express my sincere gratitude to my supervisor Univ.-Prof. Dr.-Ing.
Jörg Blankenbach for supporting me with patience, motivation and knowledge through-
out my doctoral studies. His guidance and advice helped me to succeed in imple-
menting the concept and writing this thesis. Furthermore, I thank him for suggesting
the catchy protocol name "GeoMQTT". Likewise, I would also like to thank Univ.-Prof.
Dr.-Ing. Ralf Bill for accepting the task of Korreferent for my doctoral thesis. His in-
sightful comments and encouragement helped me to question my work from various
perspectives and improve my thesis.

I would also like thank the many fellows who supported me during my dissertation
project. My colleagues at the Geodetic Institute were not only great sources for
ideas and inspiration, but also provided invaluable team spirit in our extracurricular
activities such as climbing, go-karting or footgolf. Special thanks go to my officemates
Robert Löhring and Marius Laska, who provided me with advice and assistance, and
Vlad for creating the GeoMQTT logo. Further, I would like to thank Lydia Gecsey,
Holger Rudat and Eberhard Vogel-Stirnberg for their precious IT and general support.
Thanks also to colleagues from sister institutes for supporting me over the course
of the dissertation, especially colleagues of the EarlyDike project, who inspired me
greatly. Thanks to them for the lively discussions in our project meetings and their
cooperation overall. Furthermore, I would also like to thank my "coffee fellows" for
providing me with much-needed daily distractions.

Finally, I thank my family and friends for supporting me spiritually throughout writing
this thesis. Thank you for always having an open ear for my concerns or ideas, even
at the breakfast table.

Aachen, November 2019
Stefan Herlé

II

One thing left to say:

“There’s still much to do; still so much to learn. [...] Engage!”
— Capt. Jean-Luc Picard, Star Trek: TNG

SUMMARY

In the Internet-of-Things (IoT) vision things of the physical world communicate with
humans and other objects by means of the Internet. The concept extends the
traditional Internet of Computers (IoC) that uses computers such as desktop PC,
notebooks or smartphones as access points to the Internet by a multitude of end
points represented by physical objects. Since things, human beings but also events
in the physical world possess various spatial properties, their actions, observations or
happenings inhere geospatial information. Hence, the exchange of digital geospatial
information in the IoT leads to the Geospatial IoT. The Geospatial IoT is fundamen-
tally different from established geoinformation technologies. Things in the Geospatial
IoT provide geodata with a much higher frequency and quantity. Its integration is
foreseen as the most revolutionary change in the history of geoinformation technolo-
gies. The ubiquitous geodata collection and provisioning through the Geospatial
IoT as an all-encompassing infrastructure holds huge potential for better spatially
understanding, modeling and visualizing of our natural and artificial ecosystems.
However, a lot of challenges occur in integrating spatial and spatiotemporal data from
IoT devices into new or already established systems. Novel requirements concern-
ing architectures, messaging mechanisms and technologies such as scalability or
efficiency appear, which must be analyzed and considered when implementing an
appropriate infrastructure.

This thesis addresses different research questions regarding an infrastructure for
the Geospatial IoT and its integration into established geoinformation technologies.
Approaching these issues, typical concepts, architectures and buildings blocks of the
IoT are investigated first. This holds especially for recent developments in the field of
IoT communications on different layers. Based on these typical structures, a concept
for a Geospatial IoT architecture is designed. The conceptual architecture uses
GeoEvents as a base data type for exchanging spatiotemporal messages between
actors in the Geospatial IoT. The data type is derived from real-world geospatial
events and states, which represent occurrences and states of continuants. Basically,
a GeoEvent is a four tuple with a name, a spatial component, a temporal component
and a message payload. With that event type defined, a GeoEvent-driven architecture
for the Geospatial IoT can be specified. It follows an event-driven pattern, so that
GeoEvents are send to interested consumers when they occur. Thereby, consumers
may specify their interest in GeoEvents by GeoSubscriptions. In the architecture,
GeoEvents are distributed by a GeoEvent processing engine, which evaluates the
meta information of the GeoEvents against filters of the GeoSubscriptions.

IV

The IoT communication protocol Message Queuing Telemetry Transport (MQTT) is
chosen to implement the GeoEvent-driven architecture for the Geospatial IoT. It
meets requirements for resource-constraint devices such as small message size and
efficiency, but has also beneficial architectural properties such as the messaging
paradigm or the scalability of the server. In the thesis, the topic-based publish/-
subscribe protocol MQTT is extended by a GeoEvent and a GeoSubscription data
type. In the developed extension called GeoMQTT, new messages are introduced to
encode these data types. A GeoMQTT broker distributes the GeoEvents between
the clients based on the GeoSubscriptions. To achieve this, filtering capabilities on
temporal and spatial components are integrated, so that GeoMQTT can be used as
a content-based publish/subscribe protocol. Several clients in different programming
languages are implemented, as well as a GeoMQTT-SN extension for unreliable
networks. The latter one focuses especially on small message sizes. GeoMQTT is
evaluated with respect to multiple requirements for IoT environments. The expres-
siveness of the message types as well as the efficiency of the subscribe mechanisms
meet the requirements for the Geospatial IoT. Further, scalability is ensured by the
GeoMQTT broker and, thus, prepared for a dynamically increasing number of things
in the Geospatial IoT. Finally, the spatiotemporal messaging protocol GeoMQTT is
integrated in established geoinformation technologies. For instance, a GeoMQTT
plug-in for QGIS is implemented to receive GeoEvents in a desktop Geographic Infor-
mation System (GIS) in real-time. The Web Processing Service (WPS) for executing
geoprocesses is extended by new input and output data types, namely GeoPipes,
so that processes on geospatial data streams can be invoked. Additionally, bridges
to Sensor Web services and to REST servers provide end users or software agents
access to historical or new GeoEvents by means of the World Wide Web (WWW).

The thesis approaches and solves some of the challenges and tasks occurring in
building an infrastructure for the Geospatial IoT. The prototypical implementation
of the GeoEvent-based architecture and its related services show that things in the
Geospatial IoT can be interconnected efficiently by a spatiotemporal messaging
mechanism. Real-time access is realizable by services and established geoinforma-
tion technologies may also participate. Nevertheless, there are still many ongoing
issues to solve, which are addressed in the end of the thesis.

KURZFASSUNG

Im Internet-of-Things (IoT) (Internet der Dinge, IdD) vernetzen sich physische Dingen
mit anderen Objekt und Menschen mittels Informations- und Kommunikationstech-
nologien des Internets. Damit erweitert das IoT Konzept das traditionelle Internet
der Computer um eine Vielzahl von Zugangspunkten. Alltägliche physische Ob-
jekte können benutzt werden um weltweit mit anderen Menschen oder Dingen zu
kommunizieren. Da Objekte, Menschen und Ereignisse der realen Welt räumliche
Eigenschaften besitzen, wohnen ihren Handlungen, Beobachtungen, Zuständen
oder Geschehnissen ebenfalls Geoinformationen inne. Durch den Austausch dig-
italer Geoinformationen (Geodaten) im IoT kann auch von einem Geospatial IoT
gesprochen werden. Dabei ist das Geospatial IoT fundamental verschieden von
konventionellen Geoinformationstechnologien. Dinge im IoT liefern ihre Geodaten
mit einer viel höheren Frequenz und Menge. Die Integration dieser Dinge wird
als der größte revolutionäre Wandel in der Geschichte von Geoinformationstech-
nologien angesehen. Dabei hat die allgegenwärtige Sammlung und Bereitstellung
von Geodaten durch ein Geospatial IoT großes Potential. Natürliche und von Men-
schen gemachte Ökosysteme können so besser räumlich erfasst, modelliert, visual-
isiert und verstanden werden. Es sind allerdings noch viele Herausforderungen zu
lösen um räumliche und raumzeitliche Echtzeitdaten von IoT Geräten in neue oder
etablierte Systeme zu integrieren. Anforderungen an Architektur und Nachrichte-
naustauschmechanismus wie etwa Skalierbarkeit oder Effizienz müssen analysiert,
evaluiert und umgesetzt werden, um eine geeignete Infrastruktur für ein Geospatial
IoT aufzubauen.

Diese Doktorarbeit fokussiert sich auf verschiedenste Forschungsfragen im Zusam-
menhang mit einer Infrastruktur für ein Geospatial IoT und der Integration von IoT
Dingen, Daten und Datenströmen in etablierte Geoinformationstechnologien. Dazu
werden zunächst typische Konzepte, Architekturen und Bausteine des IoT unter-
sucht. Insbesondere werden neuste Entwicklungen bei der IoT Kommunikation
betrachtet. Basierend auf diesen Analysen wird ein Konzept für eine Geospatial
IoT Architektur entwickelt. Die konzeptionelle Architektur benutzt als Basisdaten-
typ GeoEvents, um Akteure in einem Geospatial IoT über einen raumzeitlichen
Nachrichtenaustauschmechanismus zu verknüpfen. Dieser Datentyp ist abgeleitet
von raumzeitlichen Ereignissen aus der realen Welt. Ein GeoEvent ist ein 4-Tupel
mit einem Namen, einer räumlichen und einer zeitlichen Komponente, sowie eines
Nachrichtenrumpfes. Mittels GeoEvents kann eine GeoEvent-getriebene Architektur
(GeoEvent-driven Architecture) für ein Geospatial IoT entworfen werden. Diese

VI

folgt einem ereignisgesteuerte Muster, sodass GeoEvents direkt zum Konsumenten
geschickt werden, sobald diese auftreten. Dabei können Konsumenten ihr Interesse
in GeoEvents mittels einer GeoSubscription ausdrücken. Ein GeoEvent-Prozessor
evaluiert die Metainformationen jedes eingehenden GeoEvents gegen jede GeoSub-
scription und verteilt diese an interessierte Clients.

Das IoT Protokoll Message Queuing Telemetry Transport (MQTT) wird in dieser Arbeit
genutzt um diese GeoEvent-getriebene Architektur prototypisch zu implementieren.
MQTT erfüllt die Anforderungen zur Unterstützung von Ressourcen-beschränkten
Geräten wie eine kleine Nachrichtengröße oder gute Performanz, aber auch Architek-
tureigenschaften wie der Nachrichtenaustauschmechanismus und die Skalierbarkeit
der Server. Das themen-basierte Publish/Subscribe Protokoll MQTT wird durch die
Datentypen GeoEvents und GeoSubscriptions erweitert. Neue Nachrichtentypen wer-
den in Geospatial MQTT (GeoMQTT) eingeführt, um die angedachten Mechanismen
umzusetzen. Ein GeoMQTT Broker verteilt die GeoEvents an Clients basierend auf
den GeoSubscriptions. Dazu werden Filter-Möglichkeiten auf den Metainformationen
von GeoEvents eingeführt, sodass GeoMQTT ein inhaltsbasiertes Publish/Subscribe
umsetzt. Neben GeoMQTT Clients in verschiedenen Programmiersprachen, wird
die Erweiterung GeoMQTT for Sensor Networks (GeoMQTT-SN) für unzuverlässige
Netzwerke entwickelt, die insbesondere auf geringe Nachrichtengrößen achtet. Die
GeoMQTT Erweiterung wird in Hinblick auf mehrere Anforderungen für IoT Sys-
teme evaluiert. Sowohl die Ausdrucksstärke für die Modellierung von GeoEvents als
auch die Nachrichtengröße und die Effizienz der Filtermechanismen erfüllen die An-
forderungen. Auch die Skalierbarkeit ist durch den GeoMQTT Broker sichergestellt.
Schließlich wird das GeoMQTT Protokoll in konventionelle Geoinformationstechnolo-
gien integriert. Beispielsweise wird ein GeoMQTT Plug-in für QGIS implementiert,
um GeoEvents in Echtzeit in einem Desktop GIS zu empfangen. Des Weiteren wird
der WPS Dienst, der zum Ausführen von Geoprozessen genutzt wird, um neue Ein-
und Ausgabeformate für GeoEvents erweitert, sodass Prozesse auf raumzeitlichen
Datenströmen ausgeführt werden können. Zusätzlich werden Brücken zu Sensor
Web und Representational State Transfer (REST) Diensten vorgestellt, um archivierte
oder neue GeoEvents durch Methoden des WWW abzurufen bzw. zu veröffentlichen.

Diese Arbeit behandelt und löst einige Herausforderungen und Anforderungen, die
bei dem Aufbau einer Infrastruktur für das Geospatial IoT auftreten. Die prototyp-
ische Implementierung einer GeoEvent-getriebenen Architektur und zugehöriger
Dienste zeigt die Möglichkeit Dinge und Systeme in einem Geospatial IoT über
raumzeitliche Nachrichtenaustauschmuster zu verbinden. Zusätzlich können diese
raumzeitlichen Nachrichten von verschiedenen Diensten und konventionellen Geoin-
formationstechnologien empfangen und angeboten werden. Dennoch sind noch
weitere Herausforderungen für eine Implementierung des Geospatial IoT zu lösen,
auf die am Ende der Arbeit eingegangen wird.

CONTENTS

Acknowledgements I

Summary III

1 Introduction 1
1.1 Motivation . 1
1.2 Related Research . 3
1.3 Objectives and Questions . 6
1.4 Thesis Structure . 8

2 Fundamentals 11
2.1 The Internet-of-Things (IoT) . 11

2.1.1 IoT Actors and Smart Things . 14
2.1.2 IoT Challenges and Opportunities . 18
2.1.3 IoT Architectures . 21

2.2 IoT Devices, Sensors and Actuators . 22
2.2.1 IoT Devices . 23
2.2.2 Sensors and Actuators . 26
2.2.3 Sensor Network (SN) . 27

2.3 Internet Communication . 29
2.3.1 Messaging Patterns in Distributed Architectures 29

2.3.1.1 Request/Response . 30
2.3.1.2 Message Queuing . 32
2.3.1.3 Publish/Subscribe . 33
2.3.1.4 Notification (Observer Pattern) 35
2.3.1.5 Data Streams . 35

2.3.2 Internet Protocol Suite . 36
2.4 M2M Communication Stack . 37

2.4.1 Wireless Communication in the IoT . 39
2.4.1.1 Cellular Networks . 40
2.4.1.2 Wireless Local Area Network (WLAN) 41
2.4.1.3 Wireless Sensor Network (WSN) Protocols 43

2.4.2 IoT Application Layer Protocols . 47
2.4.2.1 Hypertext Transfer Protocol (HTTP)/HTTPS 47
2.4.2.2 Constrained Application Protocol (CoAP) 49
2.4.2.3 Message Queuing Telemetry Transport (MQTT) 54
2.4.2.4 Extensible Messaging and Presence Protocol (XMPP) 55
2.4.2.5 Advanced Message Queuing Protocol (AMQP) 60

2.5 IoT Information and Services . 63
2.5.1 OGC’s SWE: a SOA for the Sensor Web 64
2.5.2 SensorThings API: a Resource-Oriented Architecture for the IoT 69

VIII CONTENTS

2.5.3 Event-driven Architectures & OGC’s Eventing Work 71
2.6 IoT Data Processing and Visualization . 74

2.6.1 IoT Data Processing . 75
2.6.2 IoT Data Visualization . 76

3 Geospatial Internet-of-Things 79
3.1 Characteristics of a Geospatial IoT . 79

3.1.1 Spatial Nature and Modeling of Things 79
3.1.2 Spatial Integration in IoT Systems . 82

3.2 Modeling Real-World Events . 83
3.2.1 Spatiotemporal Events in IoT Applications 84
3.2.2 Spatiotemporal Modeling in GIS . 86

3.2.2.1 Stage One: The Snapshot Model 86
3.2.2.2 Stage Two: The Object Model 88
3.2.2.3 Stage Three: The Event Model 89

3.2.3 Geospatial Processes, Events and States 90
3.3 Temporal Component of Geospatial Processes 95

3.3.1 Time Domain . 95
3.3.2 Granularity of Time . 96
3.3.3 Encodings of Temporal Data Types . 97
3.3.4 Temporal Relations of Geospatial Processes 100

3.3.4.1 Point-Point Relations . 100
3.3.4.2 Interval-Interval Relations . 101
3.3.4.3 Interval-Point Relations . 103

3.4 Spatial Component of Geospatial Processes 104
3.4.1 Spatial Referencing . 104

3.4.1.1 Indirect Georeferencing System 105
3.4.1.2 Direct Georeferencing System 106

3.4.2 Fundamentals of Geospatial Data . 110
3.4.3 Encodings of Geospatial Objects . 111
3.4.4 Topological Relations of Geometries 115

3.4.4.1 Four-Intersection Model (4IM) 115
3.4.4.2 Nine-Intersection Model (9IM) 116
3.4.4.3 Dimensionally Extended Nine-Intersection Model (DE-9IM) . . 116

3.5 Architecture of the Geospatial IoT . 119
3.5.1 GeoEvent-driven Architecture for a Geospatial IoT 120
3.5.2 GeoPipe Concept . 121

3.5.2.1 GeoPipe Requirements . 123
3.5.2.2 Subscribing to GeoPipes . 125

3.5.3 GeoEvent Processing & GeoStreams 126

4 Geospatial MQTT (GeoMQTT) 129
4.1 Geospatial IoT Application Protocol Evaluation 129
4.2 MQTT Details . 131

4.2.1 Topic-based Publish/Subscribe Model 132
4.2.2 MQTT Control Packets . 135
4.2.3 Features . 136

CONTENTS IX

4.2.3.1 Quality of Service (QoS) . 136
4.2.3.2 Persistent Session . 138
4.2.3.3 Retained Messages . 138
4.2.3.4 Last Will and Testament . 139
4.2.3.5 Keep Alive . 139

4.2.4 MQTT over WebSockets . 140
4.2.5 MQTT for Sensor Networks (MQTT-SN) 141

4.3 GeoMQTT Extension . 143
4.3.1 GeoEvents with GEOPUBLISH Packet . 145
4.3.2 GeoSubscription with GEOSUBSCRIBE Packet 147

4.3.2.1 Temporal Filter . 149
4.3.2.2 Spatial Filter . 151

4.3.3 Unsubscribing from GeoSubscriptions 153
4.4 GeoMQTT Implementations . 153

4.4.1 GeoMQTT Broker . 153
4.4.2 GeoMQTT Clients . 155

4.5 GeoMQTT-SN . 156
4.5.1 GEOPUBLISH in GeoMQTT-SN . 157
4.5.2 GEOSUBSCRIBE & GEOUNSUBSCRIBE in GeoMQTT-SN 159
4.5.3 Registering Geometries by GEOMREGISTER 160
4.5.4 Implementation of Gateway and Clients 161

5 GeoMQTT Evaluation 163
5.1 Evaluation Objectives . 163
5.2 Modeling of GeoEvents & GeoSubscriptions 164

5.2.1 Geospatial IoT Scenarios . 164
5.2.1.1 Stationary Devices - Structural Monitoring 164
5.2.1.2 Mobile Devices - Environmental Monitoring 166

5.2.2 Spatiotemporal Modeling . 166
5.2.3 GeoEvent Encoding Comparison . 171
5.2.4 GeoSubscription Encoding Comparison 176

5.3 Broker Performance Testing & Scaling . 178
5.3.1 Testbed Specifications . 178
5.3.2 Performance Test Plans . 181
5.3.3 Performance Test Results . 184

5.3.3.1 PubQoS1 & GeoPubQoS1 . 185
5.3.3.2 PubSub & GeoPubGeoSub 186
5.3.3.3 GeoPubGeoSubmultisub . 188
5.3.3.4 GeoPubGeoSubtransform & GeoPubGeoSubmultisub,transform 189
5.3.3.5 GeoPubGeoSubmultisub,transform,scale 191

5.4 Discussion on Evaluation Results . 193

6 GeoMQTT Information & Services 195
6.1 GeoMQTT Plug-in for QGIS . 195

6.1.1 QGIS and its Plug-in System . 196
6.1.2 GeoMQTT in QGIS Desktop . 197
6.1.3 Use Cases and Future Use . 199

X CONTENTS

6.2 A RESTful Access Point to GeoMQTT . 199
6.2.1 REST and the Geospatial IoT . 200
6.2.2 Bridging GeoMQTT and REST . 200
6.2.3 REST-GeoMQTT Bridge Web Application 203

6.3 Bridging the Sensor Web Enablement (SWE) Standards 204
6.3.1 Interoperability Gap . 204
6.3.2 Closing the Gap with the Sensor Bus 205
6.3.3 Sensor Bus in the EarlyDike Project . 206
6.3.4 GeoEvent Bus Extension . 207

6.4 Enhancing the WPS Interface with GeoPipes Support 209
6.4.1 Introduction in Real-Time Geoprocessing 209
6.4.2 OGC WPS Interface and Real-Time Processing 210
6.4.3 Integrating GeoPipes in the WPS Interface 212
6.4.4 Implementation and Sample Processes 217

7 Conclusion & Future Work 223
7.1 Achievements and Reflection on Research Objectives 223
7.2 Future Work . 228

Bibliography 233

List of Abbreviations 259

List of Figures 265

List of Tables 269

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

The Internet-of-Things (IoT) is regarded as one of the most disruptive technologies
of the century (Alkhatib et al., 2014). Society, industry as well as academia and
the public have already shifted their attention towards the IoT evolution to enhance
everyday activities. Aside from technology, new products, business models and
services are going to emerge from the opportunities the IoT and its related concepts
offer. The IoT evolution is driven by advances in sensors and actuators but also
increased interconnectivity for IoT devices. In a few years, embedded technology that
uses sensors and actuators will shape the way humans and machines interact and
communicate with each other. Gartner (2017) forecasts the number of connected
devices will rise to 20.4 billion in 2020, with 12.8 billion things in the consumer market
and 7.4 billion things in the business sector. But the IoT is more than just sensors and
actuators embedded into environmental, urban or personal applications. Through
interaction with the physical world, these sensors record tremendous amount of data,
but to understand and enhance improvements, computing capacities in back-end
computers and data centers are required as well. IoT use cases such as smart
city applications rely heavily on sensors and actuators. However, realizing their full
potential requires comprehensive analysis of a multitude of tremendous, fast data
streams in real-time. IoT platforms consists several technologies, but sensors and
actuators form the basis of interactions with the physical world.

Taking a closer look at current, evolving or future IoT applications, most use cases
involve the use of geospatial data. For instance, smart city or smart farming appli-
cations often involve activities such as managing spatial assets or infrastructures,
interconnecting moving devices and vehicles, monitoring environmental parameters
or living organisms, all while optimizing energy consumptions. In these everyday
activities, spatiotemporal data forms an essential building block towards improv-
ing efficiency. Relevant data can be generated by in-situ sensors, devices such
as Global Navigation Satellite System (GNSS) receivers, remote sensors such as
satellite imagery, or surveillance cameras. Massive real-time geospatial data is
generated from various sources that must be embedded into context, and analyzed
in real-time according to the demands of each application. It becomes evident that
these applications can be considered as part of the Geospatial IoT, in which sensor
information, processes, analysis and consequent actions are driven by geospatial
data and spatiotemporal data streams.

2 1. INTRODUCTION

The Geospatial IoT is fundamentally different from traditional geoinformation tech-
nologies. Given the level of networking in the Geospatial IoT, further innovations
in geoinformation and Geographic Information System (GIS) will develop at an in-
creasingly accelerated rate (see Figure 1.1). With rising numbers of IoT devices, the
quantity of producers and consumers of spatial and spatiotemporal data will increase
exponentially.

Le
v
e
l
o
f

n
e
tw

o
rk

in
g

1970 1990 2005 2015 future time

Static Geoinformation

Mobile
Geoinformation

Volunteered
Geographic
Information

Web 2.0World Wide Web

Internet
GIS

Geo Web
Services

GeoSensor
Networks

Desktop
GIS

Geospatial
Internet

of
Things

Web 3.0

CyberGIS &
CloudGIS

Real-Time
GIS

Web 4.0

Geospatial
Web

Geospatial
Analytics

Smart
Geospatial

Objects

Geostream
processing

Web
Mapping

Source: Author’s illustration

Figure 1.1: Evolution of Geoinformation-Technology

While in the early days of digital geoinformation, the data were static and the first
desktop GIS utilizes them to visualize and analyze several spatial occurrences. With
the emergence of the WWW in the 1990s, concepts of Internet GIS evolved from
static web mapping and more advanced web portals in WebGIS (Abel et al., 1998) to
geo web services. These services, such as the widely-used Web Map Service (WMS),
were developed to retrieve georeferenced map images using HTTP (Doyle, 2000).
Geo web services form the basis for Spatial Data Infrastructures (SDIs), which enable
the discovery and use of geospatial data by users. Following these developments,
the INSPIRE initiative (Infrastructure for Spatial Information in Europe) became the
leading effort in Europe to make spatial and geographical information accessible and
interoperable. Here, standardized geo web services are the central building block of
the initiative.

1. INTRODUCTION 3

The movement of static WWW towards the Web 2.0, in which user-created and
driven content combined with technological advances in mobile computing, led to
further developments in data collection and consumption in other areas. Examples of
such developments can be found in the field of Volunteered Geographic Information
(VGI) (Goodchild, 2007), participatory sensing (Burke et al., 2006) or Mobile GIS as
well as Location-Based Services (LBSs) (Küpper, 2005; Blankenbach, 2007). The
introduction of cloud computing and its related "as a Service" (*aaS) models relo-
cated IT infrastructure components from individual computers to computer networks.
CloudGIS and CyberGIS are recent innovations, which have evolved from cloud
computing technology (Wang, 2010; Naghavi, 2012; Egenhofer et al., 2016).

The next logical evolutionary step is the incorporation of real-time and big data in
GIS. Positioning technology such as GNSSs have shown that the position of objects
can be monitored in real-time, so that in the future it will be possible to know "where
everything is, at all times" (Goodchild, 2010). Geo Sensor Networks (GSNs) and
devices in the Geospatial IoT may publish real-time geospatial data and initiate
geo data streams. According to ESRI president Jack Dangermond (2017), the
integration of real-time data from the IoT directly into a GIS layer stack is the most
revolutionary change in the history of GIS and brings great opportunities. Real-
time GIS developments will affect every kind of geoinformation technology from the
software level (desktop GIS or geo web service) and the geospatial data management
or the spatiotemporal data modeling, over geospatial analytics and geocomputation
frameworks to dynamic visualization and geographic knowledge discovery (Yue &
Jiang, 2014).

While the potential for better spatially understanding, modeling and visualizing our
natural and artificial ecosystems through using IoT as an all-encompassing infras-
tructure is enormous (Kamilaris & Ostermann, 2018), a lot of challenges remain in
integrating spatial and spatiotemporal data from IoT devices. The Geospatial IoT
needs a sophisticated and scalable infrastructure to cope with an onslaught of geo
sensors publishing data in real-time. Such an infrastructure must be based on suit-
able concepts and communication mechanisms to provide a stable and interoperable
architecture.

1.2 RELATED RESEARCH

In academic literature, the Geospatial IoT has become a popular research subject in
the GIScience community. The research aspects under this subject are quite wide-
ranging and new challenges and opportunities are a frequent occurrence (Rieke et al.,
2018). Kim (2018) identifies five core research areas for Geospatial IoT platforms:

4 1. INTRODUCTION

1. Geospatial IoT edge computing: sensor data generation and processing per-
formed in IoT devices.

2. Geospatial IoT device integration: integration and acquisition of heterogeneous
geospatial data in IoT platforms.

3. Geospatial IoT data acquisition & management: querying and processing geo
data streams from IoT devices as well as spatiotemporal analysis and storage
management for large amounts of spatiotemporal data.

4. Geospatial IoT service provider: standardized web service interfaces e.g. for
accessing Geospatial IoT data.

5. Geospatial IoT applications: development of various kinds of Geospatial IoT
applications (smart city, LBS etc.).

Research in these areas aims to address various challenges, that arise in the devel-
opment of Geospatial IoT architectures. These challenges include data acquisition,
storage, analysis, and disclosure, in addition to services related to spatial, locational
and sensor data. Resolving these problems requires interdisciplinary cooperation,
which will in turn improve the efficiency and development of Geospatial IoT appli-
cations. In the future, IoT applications which rely on geospatial data acquisition,
distribution and analyses will shape our everyday processes and activities.

In research literature, one can find several approaches towards resolving challenges
that occur in the development of Geospatial IoT applications. These approaches
range from optimizing structures in GSN to providing appropriate visualization tech-
niques for spatiotemporal data streams. In this thesis, we focus on the integration of
Geospatial IoT devices in an appropriate architecture and simple processing of the
emitted geo data. However, since a decoupled view on these fields is impossible, the
other research areas are also tackled on the side.

Geospatial IoT device and data integration depend on communication between every
actor in the Geospatial IoT - from small devices in GSN over a platform with multiple
servers to the end user or device. Smart objects publish data or events to notify
other actors to the latest sensor measurements or actuating tasks. To illustrate this
integration process, Serbanati et al. (2011) introduced a conceptual model of smart
objects in an IoT reference model. Researchers in this study view smart objects
as a connecting concept between a physical object and a digital proxy, which can
be accessed with appropriate technical interfaces. Zakaria et al. (2015) merge the
concept of smart objects of the IoT with geographic objects in space to form smart
geographic objects (short SGC). These objects, equipped with embedded technology,
communicate with nearby devices or IoT platforms. However, none of these studies
focus on the actual implementation of the required technical communication process
and its exchange patterns.

1. INTRODUCTION 5

Integration of devices and their data can be realized by various mechanisms and
protocols such as CoAP or MQTT, which utilize different messaging mechanisms.
Further exploration of these protocols, messaging systems and their associated
advantages and disadvantages can be found further on in this thesis. The integration
of sensors and IoT devices into an Internet platform can be found in numerous
technical solutions. For instance, Bröring et al. (2010) proposed a concept called
Sensor Bus to connect sensor data to Internet services on the Sensor Web by using
protocols such as IRC or XMPP. Commercial solutions, such as Microsoft’s Azure
IoT Hub1 or Amazon’s AWS IoT2 apply common IoT protocols to connect Internet-
connected devices with cloud services. Unlike in the Geospatial IoT, however,
these solutions offer plain messaging but do not consider the characteristics and
advantages of geospatially enhanced data and data streams.

Focusing on geospatially enhanced data and streams, some proposed systems can
be found in the literature advancing the dissemination of messages based on the
spatiotemporal characteristics of the data. Chen et al. (2003), Grothe (2010) and
Chen & Shang (2018) have developed such systems for use cases in different areas.
These systems usually employ publish/subscribe message exchange patterns, where
distribution is based on spatiotemporal filtering. Similar research on this topic has
been conducted by Simonis (2006), Echterhoff & Everding (2008), Echterhoff (2010)
or Huang (2014) in the Sensor Web domain. Together these studies resulted in
the Open Geospatial Consortium (OGC) Publish/Subscribe Standard 1.0 interface
specification, which supports the publish/subscribe message exchange pattern in
OGC web services (Braeckel et al., 2016). Here, spatiotemporal criteria may be
supplied to filter out interests in certain events. However, all these approaches
are hardly suitable for resource-restricted devices deployed in the IoT. For the
Geospatial IoT, several researchers proposed similar approaches: in Jin & Chen
(2010) and Jin et al. (2013) spatiotemporal events act as a base data type for
message dissemination. Publish/subscribe middleware is implemented to distribute
messages based on spatiotemporal and logical filtering. Both systems are, however,
only specified to handle a limited number of clients.

The integration of Geospatial IoT data in GIS technology is a topic with a wealth
of research, ranging from simple spatial visualization to data geoprocessing. Shi
et al. (2010) used Google Maps to implement a digital home control system for
a smart home solution. Aceves & Larios (2012) realized a web service layer to
provide georeferenced smart city data in a web browser application. Similarly,
Ribeiro et al. (2015) implemented a GIS web-based platform for wireless in-situ geo
sensor data visualization and distributed processing by accessing OGC interface
standards such as the Sensor Observation Service (SOS) or the Web Processing
Service (WPS). Processing of Geospatial IoT data with GIS technologies can be

1https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols
2https://docs.aws.amazon.com/en_us/iot/latest/developerguide/protocols.html

6 1. INTRODUCTION

found in Thakur et al. (2015) or Wiener et al. (2016). Both devised architectures to
deal with spatiotemporal data streams. In Kmoch et al. (2016), processes acting on
sensor data were integrated and published with the OGC WPS interface in a SDI.

However, a fully-integrated architecture for the Geospatial IoT - one, that is based
on a common spatiotemporal data type and communication mechanism - is only in
the beginning stages of development. Contemporary architectures lack in integrating
IoT devices and existing GIS technology. This thesis aims to analyze and describe
how a more sophisticated architecture would look like, specifically one that functions
within the networking parameters of restricted environments.

1.3 OBJECTIVES AND QUESTIONS

The Geospatial IoT is a system that integrates disparate actors such as smart
objects, embedded IoT devices, their sensors, their spatiotemporal data streams,
cloud infrastructures and web services. The goal of this thesis is to develop an
appropriate architecture for the Geospatial IoT based on spatiotemporal data types
and communication mechanisms that can be utilized by every device in the system.
Several substantial requirements must be defined to both, the conceptual model and
communication mechanisms to allow the participation of every object and device.
These communication mechanisms should be based on advanced protocols and
standards.

Within the architecture, communication mechanisms should be developed to enhance
and optimize the dissemination of spatiotemporal messages by exploiting their meta
information. Actors and systems should be able to prioritize messages based on
spatial regions and points in time. Since the number of devices and number of
spatiotemporal data streams can be massive in Geospatial IoT applications, the
networking mechanisms must be constructed to handle concurrent participating
clients on a huge scale. A high level of networking and the dynamic expansion of
the Geospatial IoT require flexible properties such as a facile scalability. Different
kinds of devices should be able to participate, such as resource-restricted devices
(e.g. single-board computers or sensor nodes), and ordinary computers. This calls
for a specific level of interoperability. Aside from a concept for the architecture,
requirements for an appropriate communication mechanism must be derived. These
requirements should be based on the theoretical background and challenges of the
IoT. Finally, a prototypical implementation should be created. The following research
questions regarding the concept of the IoT architecture can be raised:

• What is the spatial nature of things in the IoT?

• What are the spatiotemporal data types in the Geospatial IoT?

1. INTRODUCTION 7

• How can an architecture employ these data types, what are the related con-
cepts?

• In what form may actors specify their interest in spatiotemporal messages?

A prototypical implementation may ask for the following questions:

• What are the requirements to implement a communication mechanism for the
Geospatial IoT based on the conceptual model?

• Which IoT protocol meets the requirements for our concept?

• How to implement the desired concept and functionalities?

• In which way can we evaluate the prototypical implementation?

This implementation should be evaluated regarding the derived requirements. The
evaluation should investigate the capabilities of the developed communication mech-
anisms according to the applicability for the desired Geospatial IoT architecture,
especially whether the mechanisms have the capabilities to interconnect smart ob-
jects of all kinds. At this, the question raises whether introduced spatiotemporal
filtering capabilities can be exploited efficiently to optimize message dissemination
between system participants. We focus further on the expressiveness of the con-
ceived spatiotemporal data types for the Geospatial IoT as well as connectability and
scalability of the proposed system.

An additional objective of this thesis features the linkage of Geospatial IoT devices,
their data and the proposed architecture as well as the developed messaging mech-
anisms with established GIS technologies. Like mentioned in the motivation for
this thesis, GIS concepts and techniques have been evolved with the technological
development phases of computers, the Internet and the Web: from desktop-based
over Internet GIS to geo web services and GIS applications in the cloud. The next
logical step in this evolution is the integration of spatiotemporal data in real-time,
which is induced by devices in the IoT. Thus, existing GIS technologies must adapt
and bind the techniques that drive the IoT revolution. This holds for desktop GIS,
but also distributed GIS applications such as geo web services. Therefore, we aim
at investigating the extendability of these established geospatial concepts and tech-
nologies. The research deals with the capabilities of connecting desktop GIS and
geo web services such as the OGC WPS interface for processing geospatial data
with the proposed Geospatial IoT architecture. This leads to various questions, for
instance:

8 1. INTRODUCTION

• Is a seamless integration of the Geospatial IoT in GIS technology desirable,
practical and effective?

• How adaptable and flexible are existing GIS applications and standards to novel
mechanisms of the Geospatial IoT?

• Can existing GIS technology cope with the amount and the velocity of spa-
tiotemporal data and data streams of the Geospatial IoT?

• Are new innovative solutions required to manage the integration of GIS methods
and the Geospatial IoT?

The thesis tries to approach these questions raised by the different research areas
in Geospatial IoT platforms. The approach involves the implementation of a plat-
form based on a conceptual architecture and conceived messaging models for the
Geospatial IoT. Questions about the efficient integration of Geospatial IoT devices,
geospatial computing capabilities and GIS technology are to be examined with the
help of this platform.

1.4 THESIS STRUCTURE

Tackling the objectives and questions raised before, the outline of this thesis is in-
spired by the presented research agenda. Hence, it is structured into 7 chapters,
which are conceptually arranged from theory chapters dealing with concepts of the
IoT and the Geospatial IoT, implementation and evaluation parts of the proposed
architecture and communication mechanisms, to an implementation chapter about in-
tegrating Geospatial IoT concepts in GIS technology. The interrelationships between
the chapters are depictured by the diagram in Figure 1.2.

After the introduction (Chapter 1), which describes the motivation and objectives of
this thesis, Chapter 2 focuses on the fundamentals of the IoT. First, the vision of the
IoT is presented with its characteristics, drivers, challenges and disruptive opportuni-
ties. Since the fundamental building block of the IoT are Internet-connected things,
we give also a profound view on the concept of smart things. This conceptual view
is followed by specific research on IoT architectures and patterns. The four building
blocks of IoT architectures are investigated. This includes (1) IoT devices, sensor and
actuators, (2) M2M communication protocols in the IoT, (3) information and service
models for the IoT and (4) visualization and analysis of IoT data. Due to the specific
objectives of this thesis, the focus is on the communication patterns, mechanisms and
protocols that are commonly used in IoT systems. It serves especially as a profound
basis for the following two chapters. The third chapter (Chapter 3) develops the idea
of the Geospatial IoT and transforms the fundamentals of the generalized IoT in

1. INTRODUCTION 9

Chapter 2: Fundamentals

IoT Architectures, Patterns

Chapter 3: Geospatial IoT

GeoEvents, GeoProcesses

Chapter 4: GeoMQTT

Extension, Implementation

Chapter 5: Evaluation

Modeling, Performance

Chapter 6: GeoMQTT Information & Services
Bridging to established GIS technologies

Chapter 7: Conclusion & Future Work
Achievements, Future Developments & Ideas

Chapter 1: Introduction

Motivation, Objectives, Related Research

Source: Author’s illustration

Figure 1.2: Thesis outline and interrelationships between chapters

a spatiotemporal context. The proposed architecture implements a feedback loop
system from observation of real-world phenomenon, over analyzing situations and
making decisions, to actuating based on these decisions. It is driven by events, which
are first observed and subsequently distributed in the system. Thus, we explore the
notion of spatiotemporal events and processes in the chapter. Especially, the spatial
and the temporal components of events are discussed by investigating their nature
and the relationships between events in both components. We define data types
and concepts such as GeoEvent and GeoPipes for our proposed GeoEvent-driven
architecture and conduct a requirement analysis for a suitable communication mech-
anism and protocol to implement a prototypical architecture for the Geospatial IoT.
The implementation chapter (Chapter 4) first evaluates the different M2M commu-
nication protocols presented in Chapter 2 with respect to this requirement analysis.
Subsequently, the best matching protocol (MQTT) and its core features are explained

10 1. INTRODUCTION

with more detail. To achieve the desired functionalities, the original protocol should
be extended by specific functions, which is specified afterwards. We present the
GeoMQTT extension by describing precisely the introduced new message types and
mechanisms. By doing so, first the structures of the new data packets are depictured
and, second, the introduced spatiotemporal filtering capabilities are described. Both
rely on the conceptual architecture established in Chapter 3. Further, we give in-
sights in the implemented GeoMQTT framework and corresponding software. Also,
the extension GeoMQTT-SN for unreliable networks is described, which allows to
connect sensor nodes in GSN to the GeoMQTT system. This covers especially the
different introduced control packets, which aim for an as small as possible size. In
the following evaluation chapter (Chapter 5) the proposed architecture in conjunction
with the implemented protocol is assessed based on constructed scenarios in the
Geospatial IoT. The evaluation serves to examine whether the requirements are met
by the advanced protocol. We focus here on different aspects: first, the modeling
capabilities of the introduced message types in GeoMQTT are investigate according
to the nature of physical events and processes developed in Chapter 3. Second, the
message types and their characteristics are compared to other common encoding
and messaging standards with similar modeling capabilities, especially in terms
of message size. Finally, the protocol is tested under load to investigate first the
performance and efficiency of the proposed Geospatial IoT communication pattern
and, secondly, the scalability of the whole system. In Chapter 6 the implemented
Geospatial IoT information and service applications based on GeoMQTT are pre-
sented. This chapter focuses on the integration of Geospatial IoT data and devices
with established GIS technologies. First, the integration of GeoMQTT in desktop
GIS software (here QGIS) to enable the receipt of real-time events is implemented
by a plug-in. Further, different bridges to existing architectures in the IoT are built:
A RESTful access point to GeoMQTT provides the translation between an event-
driven and a resource-oriented architecture, while an adapter for the Sensor Web
Enablement (SWE) services offers the binding to a service-oriented architecture.
The latter one can be used to request sensor measurements or sensor tasks by
using HTTP-based services. Beside these bridges, an extension for the WPS, which
can be used to offer geoprocesses as a service, is introduced. By integrating the
GeoPipes concept in the service interface and its processes, the former static input
and output data types are enhanced by data streams, so that they can process and
issue continuous streams in real-time. In the conclusion chapter (Chapter 7), the
achievements of this thesis are summarized as well as reviewed with respect to the
postulated objectives and questions. Based on this premise, we develop and discuss
further ideas to advance the proposed architecture for the Geospatial IoT.

CHAPTER 2

FUNDAMENTALS

Within the IoT vision, physical things are arranged in communication networks and
connected to the Internet. These can be everyday objects or large machines. This
chapter introduces the concept and history of the IoT briefly and points out its actors,
challenges, opportunities and architectures. The latter one is discussed in detail to
give insights in the four building blocks of IoT architectures. At this, the focus lies on
the communication mechanisms, patterns and protocols in the IoT, since the practical
part of the thesis relates on these concepts, techniques and technologies.

2.1 THE INTERNET-OF-THINGS (IOT)

In 1991, Mark Weiser published the article "The Computer for the 21st Century",
in which he describes the seminal vision of future technological ubiquity (Weiser,
1991). It counts as the birth of the IoT vision. Weiser coined the vision of "ubiquitous
computing", which describes a future, where computing devices will be replaced by
intelligent objects in everyday life. In his article, he already envisioned the concept of
smart homes and the technology of smart tablets, although still science-fiction during
these times.

The term Internet-of-Things (IoT) was finally introduced in 1999 by Kevin Ashton,
later co-founder of the MIT’s Auto-ID Center. According to Ashton (2009), he used the
term first as the title for a presentation at Procter and Gamble (P&G) when he linked
the idea of Radio-Frequency Identification (RFID) to P&G’s supply chain. His initial
idea was to move the data gathering process from humans to computers, so that
they can see, hear and smell the world for themselves (Ashton, 2009). He argued if
computers knew everything, we could track and count everything, which would lead
to a revolution in reducing waste, loss and costs.

Since then, the vision of the IoT began to emerge. Neil Gross predicted 1999 in an
article published in the BusinessWeek, that the "earth will don an electronic skin",
which "will use the Internet as scaffold to support and transmit its sensations". It
consists of millions of embedded electronic measuring devices that will probe and
monitor cities, species, atmosphere, highways, fleets of trucks or human bodies
(Gross, 1999). During the next years, different developments supported this view, for
instance, appliances such as refrigerators were connected to the Internet. In 2005
UN’s International Telecommunications Union (ITU) published its first report on the
topic shaping its vision (ITU, 2005):

12 2. FUNDAMENTALS

A new dimension has been added to the world of information and com-
munication technologies (ICTs): from anytime, any place connectivity
for anyone, we will now have connectivity for anything. Connections will
multiply and create an entirely new dynamic network of networks – an
Internet of Things

Nowadays, the IoT vision evolves steadily shaping whole industries (Industrial IoT
(IIoT)) and everyday activities. Advanced concepts have been introduced by different
domains. High-level concepts such as the Web of Things (WoT) or the Sensor
Web are specializations or applications of the IoT. The WoT describes the idea of
accessing surrounding devices through web applications (Duquennoy et al., 2009).
This is similar to the vision of the Sensor Web, in which web services are offered to
provide access to sensors, sensor networks and their data (Gibbons et al., 2003).
Different services are implemented for discovery, access, alerting or planning. Thus,
both WoT and Sensor Web rely on the IoT but also on web technologies especially
the HTTP protocol. A closer look on these concepts is given in Section 2.5.

IOT AS A CYBER-PHYSICAL SYSTEM (CPS)

Other approaches introduce conceptual models for the IoT. For instance, the concept
of Cyber-Physical System (CPS) is often used along with the IoT. CPSs describe
the confluence of embedded systems, real-time systems, distributed sensor systems
and controls. Computational capabilities are integrated in physical processes by
embedded computers and networks monitoring and controlling physical processes.
Feedback loops are usually utilized, in which physical processes affect computations
and the other way around (Lee, 2008). However, the concept of CPS illustrates the
theoretical foundation for complex and distributed system based on wired or wireless
communication, but is not bound to a specific technology. Thus, some authors identify
the IoT as a manifestation of a CPS (Ibarra-Esquer et al., 2017).

The concept of CPS follows a cyber-physical model of a control system, which can
also be used to characterize data and control flows in the IoT. This model can be
represented by a set of conceptual components (Zaborovsky et al., 2016), which is
also known as the Observe-Orient-Decide-Act (OODA) loop originally invented by
Boyd (1987):

1. Observe: Gathering information about the characteristics of the environment.

2. Orient : Analyzing the parameters of the current state of the controlled object.

3. Decide: Performing decision making processes to determine an appropriate
course of action.

2. FUNDAMENTALS 13

4. Act : Physical execution of decisions via actuation and observation of results,
which restarts the loop.

In CPS, this feedback loop is implemented with embedded devices, sensors and
actuators as well as computational capabilities: Sensors observe and communicate
time-series observations to data centers for analysis. Analytical systems drive
recommendations and perform decision making processes, whose results are looped
back to sensor platform or actuators to improve the system or drive a physical
process (Shukla & Simmhan, 2017). The four components use information exchange
channels to interact with each other (Zaborovsky et al., 2016). In the IoT (as a
manifestation of a CPS), these channels are established by the Internet protocol
suite (see Section 2.3.2) and Machine-to-Machine (M2M) communication protocols
on different layers in a communication stack (see Section 2.4).

WHAT IS DISRUPTIVE WITH THE IOT?

In the future, the IoT will be omnipresent and will impact our lives significantly (Lee
et al., 2013). The evolution of the Internet towards the IoT will extend the number of
endpoints of Internet communication enormously by embedded devices, sensors and
actuators (Bonomi et al., 2014) and, thus, increase complexity. While in the traditional
Internet of Computers (short IoC) with smartphones, PCs, laptops or tablets, a person
is mostly behind the endpoints, in the IoT these are machines or complex systems.
Therefore, Ibarra-Esquer et al. (2017) argue that IoC and IoT are two disjoint sets in
an ecosystem of Internet-connected devices but they provide data and services for
each other. For instance, devices of the IoC such as PCs use methods such as web
services to access the devices in the IoT.

In IoT the endpoints are organized into systems embedded into large systems.
Bonomi et al. (2014) illustrate this with the many sensors and actuators in a smart
vehicle which communicate with each other, but also the entire vehicle communicating
with other vehicles and, ultimately, with the Internet. The same holds for other
domains such as smart cities or the industry 4.0. Thus, they call for a "system
view" rather than an "individual view", which comprises a lot of consequences.
Domain expert companies will appear in a new market that develop new systems
and applications, which have specific requirements and characteristics.

IOT CHARACTERISTICS AND DRIVERS

The ensemble of all things connected to the Internet along with the underlying
infrastructure of server form the IoT. Based on the mentioned concepts, we can
derive the following fundamental characteristics of IoT (ITU-T, 2012; Lee et al., 2013):

14 2. FUNDAMENTALS

1. Interconnectivity : Things are enabled to communicate with the IoT infrastructure
and among each other.

2. Things-related services: The IoT infrastructure provides thing-related services
such as sensor data request or actuating of a thing.

3. Heterogeneity : Devices in an IoT ranges from tiny sensors to mobile devices
and large computers. They can interact with each other or with service platforms
through communication networks.

4. Dynamic change: Like in the physical world, things connected to the IoT change
their states dynamically. They can be in sleep mode or moving between places.
Furthermore, the number of devices in an IoT also changes dynamically.

5. Huge scale: Depending on the point of view, the estimations of connected
IoT devices to the Internet range from 20 billion (Gartner, 2017) to 50 billion
(Ericsson, 2011) by 2020. Regardless of the true number, the IoT will influence
humans’ life with an enormous number of connected devices.

The evolution of the IoT is driven by different developments in several domains
during the last decade. In the technical domain, these are the developments in
M2M communication, sensor networks, respectively WSN or hardware innovations.
However, other issues relate to the accessibility of measured data or devices. This
can, for instance, be achieved by applying methods and services of the Sensor Web
or the WoT (see Section 2.5.1). Innovations in the research area of Semantic Sensor
Networks (SSN) facilitate the homogenization of sensors and sensor network (Wang
et al., 2015). So, there is not a single discipline, which drives the evolution of the IoT.

2.1.1 IOT ACTORS AND SMART THINGS

Two key actors can be identified in IoT scenarios: Users interact with physical entities
in the real-world (Serbanati et al., 2011). A user can be instantiated as a human
person or a software agent. He has a specific goal whose completion depends on
the interaction with entities in the physical world. The mediation is performed through
the IoT infrastructure. A physical entity exists in the physical environment and can be
of interest to users to satisfy a specific goal. It can be any object or any environment
from living organisms to machines or from electronic appliances to closed or open
environments.

HOW DO THE ACTORS COMMUNICATE IN IOT?

Since the actors can be human persons or different machines, the communication
endpoints in the IoT are not homogeneous and the interaction mechanisms need to

2. FUNDAMENTALS 15

be adapted to the capabilities of the communicating entities. Therefore, depending
on the instantiation of the actors, Lee et al. (2013) suggests distinguishing between
two modes of communications for the IoT:

• Human-to-Object (or Human-to-Thing) Communication: Human beings com-
municate with objects (devices) to obtain information or to control the behavior
of the objects.

• Object-to-Object (or Thing-to-Thing) Communication: Objects communicate
with each other. An object or device delivers information to other objects with
or without the involvement of humans. In the IoT this communication includes
physical devices, logical content and resources. Thus, M2M is a subset of
Object-to-Object communication.

WHAT IS A (SMART) THING?

A thing in the IoT represents either an object of the physical world, a physical thing
(or physical entity), or of the information world, a virtual thing. Whether physical,
the thing is integrated into information and communication networks, is connected
to the Internet and is identifiable. Van der Zee and Scholten (2014) point out that
the "environment consists of physical objects (or things), the Earth’s natural objects
(trees, rocks, etc.) and man-made artificial objects, some of which are smart objects."
These can be things connected to the IoT and helping to perform a certain goal.
The term smart thing (or smart object) refers to things embedded with processors,
sensors, software and connectivity functionalities and exchange data between the
thing (itself) and its environments, manufacturers, users and other systems. Smart
things have several features and capabilities. Basically, these are not based on
single technologies, but multiple convergent technical lines of development contribute
to novel functionalities. The capabilities, which can be found in smart things, are
described in the following list (Mattern & Flörkemeier, 2010):

1. Communication: Things can communicate with the Internet or other things
(Thing-to-Thing) in the IoT. They may update their state, send messages and
use resources and services provided by servers.

2. Addressability : Things are detectable by discovery, lookup or name services
and can be requested and influenced.

3. Identification: Objects are uniquely identifiable. This can be done actively
or passively by using RFID technologies or bar codes in conjunction with a
mediator such as a smartphone.

4. Sensors: Things are equipped with sensors to collect information about their
state or environment. They forward measured data or react to these.

16 2. FUNDAMENTALS

5. Actuators: Beside sensors, actuators can be connected to things to drive
physical processes in their environment.

6. Embedded processing: Processors and microcontrollers may process mea-
sured data immediately.

7. Localization: Things in the IoT know their physical location, which is captured
automatically using GNSSs or other positioning technologies.

8. User interface: Smart things provide mechanisms so that humans can interact
with them (Human-to-Thing).

Although smart things (or smart objects) may embody these functionalities, it de-
pends highly on the use case of the IoT application, which of the features are really
implemented. For instance, smart things in an application aiming at monitoring the
environment are probably equipped with sensors and use communication mecha-
nisms for real-time monitoring and publishing of data, but do not need to implement
user interfaces or actuators. Haller (2010) defines smart things as physical entities
which are equipped with technical communication devices. According to Serbanati
et al. (2011), a smart object is the extension of a physical entity with its associated
digital proxy. Although smart objects depend on IoT devices with sensors, tags and
actuators, Serbanati et al. chose a definition which is decoupled from the technol-
ogy level. They define a reference model for smart objects by giving a relationship
diagram between entities which is depictured in Figure 2.1.

The figure illustrates the IoT reference model by Serbanati et al. (2011) with the
conceptual model of smart objects given in the dashed rectangle. Like mentioned,
the actors in IoT are basically users on one side who interact with physical entities
on the other side. The interaction happens through the smart object model. Physical
entities are represented in the digital world with digital proxies, digital entities that
are software entities such as agents, services or data entries. Digital entities can
be viewed as users in the IoT context and may interact with other users including
humans. In the model, digital proxies are bi-univocally associated to the represented
physical entities and own a unique ID to identify it. Further, proxies are digital
synchronized representations of a set of properties or aspects of the entity meaning
that parameter are updated in the digital representation if changes happen to the
physical entity and changes to the digital proxy could also manifest on the physical
entity in the physical world. A smart object is the extension of a physical entity with
its associated digital proxy. Since any changes in the properties of a smart object
must be represented in the physical as well as in the digital world, one or more
devices are embedded, attached or placed in vicinity to the associated physical entity.
They can be tags to identify, sensors to monitor, actuators to act on the physical
entity or a combination of these bundled into a platform. The device is necessary to
mediate the interactions between physical entities and digital proxies.

2. FUNDAMENTALS 17

Device

TagSensor Actuator

Physical
Entity

Smart
Object

Digital
Proxy

Resource

Digital
Entity

Human

User

0...*

invokes

reads

monitors

identifies

acts on

extends

0...*

0...*

0...*

0...* 1...*

1...*

1...*

1...*1 1

111

1

1 1

1

1 1

Source: based on Serbanati et al. (2011)

Figure 2.1: IoT reference model

Users may use resources to interact with smart objects. These digital, identifiable
components are associated to digital proxies and can be used to retrieve information
of physical properties of the associated physical entity through sensors or modify
them through actuators. Further, digital properties of the digital proxy can be retrieved
and modified or, finally, complex hardware or software services offered by the smart
object may be utilized. Actual access to resources is provided by services.

18 2. FUNDAMENTALS

2.1.2 IOT CHALLENGES AND OPPORTUNITIES

Before going into the different building blocks in detail, we will describe some chal-
lenges and opportunities, which arise with the concept of the IoT and its diffusion into
everyday applications. The following list is based on Mattern & Flörkemeier (2010)
and supplemented by a review of relevant challenges and aspects described in the
literature.

SCALABILITY

One of the main challenges in developing an IoT is the potentially vast number
of physical entities and devices, which may be connected to the IoT. The current
Internet consists of a comprehensible number of participants. But with the technical
innovations such as miniaturization of computing power, the number of connected
devices increases exponentially. Communication mechanisms in such a network with
millions of participants must be efficiently implemented. The scalability of the network
is a crucial requirement which must be met in IoT. Guinard et al. (2011) argues that
for open and less constrained applications, massive scalability is necessary among
other requirements.

PLUG AND PLAY

Smart things should be connected to the IoT in a plug and play manner. Large
configuration efforts inhibit the diffusion and development of smart things in an IoT,
which is not desirable. Seamless integration and cooperation of interconnected things
with applications work only, if plug and play capabilities are supported (ITU-T, 2012).

INTEROPERABILITY

The physical world and its potentially connected objects in an IoT are extremely
heterogeneous, from everyday analogous objects to specialized machinery. Conse-
quently, the used hardware but also software technologies to establish connections
to the Internet may vary from object to object. But, it must be ensured that the
objects are able to intercommunicate with each other. Otherwise each IoT application
evolves into isolated silos. Therefore, suitable communication standards need to
be developed to ensure interoperability. Nastase (2017) states that interoperability
should be kept in mind since the huge amount of IoT research in the last decade
have led to large volume of new IoT products on the market. However, a fragmented
marked consists of multiple vertical industries, which leads usually to domain or
vendor specific closed systems. These "vertical silos" do not support interoperability
and cause various problems e.g. in data exchange (Latvakoski et al., 2014).

2. FUNDAMENTALS 19

DISCOVERY

The large number of things and their digital representations in the IoT require mecha-
nisms to guarantee their identification and discovery. Interactions with objects are
only possible, if they are known and findable. Mayer & Guinard (2011) point out that
in the complete IoT vision millions or even billions of smart things will be linked to
the Web. They expect that finding, selecting and using smart things in a fast, reliable
and user-friendly way will become extremely difficult. That is why mechanisms are
required to allow users or machines to discover smart things and understand their
capabilities. For instance, (Jirka et al., 2009) suggest a Sensor Instance Registry
(SIR) and a Sensor Observation Registry (SOR) enabling the discovery of sensor
instances and sensor services as a Web service.

SOFTWARE COMPLEXITY

The heterogeneous hardware embedded in IoT things leads to a diversity of hard-
ware and software products. For instance, embedded systems consist of restricted
hardware resources, while servers that offer services and manage representations
have access to basically unrestricted resources. We already saw that interoperability
is a key issue in deploying open IoT systems. Because of the heterogeneity of the de-
vices and servers, this issue becomes more complex. Standards for communications
in IoT may be developed, however, the real challenge is to adopt these standards in
every device.

DATA VOLUME AND INTERPRETATION

In the IoT the volume of unstructured and structured data grows exponentially with
rising numbers of IoT devices and other entities. The data need to be handled
in a sophisticated way: new approaches in storing, managing and processing are
required. Big data analytics describe the process of searching a database, mining
and analyzing large data sets. Marjani et al. (2017) investigate different analytic
types and their usage in IoT applications. They conclude that the combination of
IoT and big data analytics is compelling, but existing solutions of analytics are still
in their early stages of development and need to be advanced for IoT data. For
instance, simultaneously to the amount of data, the velocity of data e.g. measured by
sensors increases tremendously as well. Tönjes et al. (2014) argue that the real-time
demand of IoT applications challenges data interpretation. There is a gap in providing
efficient and scalable methods that enable real-time processing and interpretation of
streaming sensory data. Novel big data solutions such as the Lambda architecture
(Marz & Warren, 2015) or the Kappa architecture by Kreps (2014) are required to
analyze and interpret multiple high-frequency data streams.

20 2. FUNDAMENTALS

SECURITY AND PRIVACY

Lin et al. (2017) define the security features as well as the security and privacy
issues, which should be considered in IoT infrastructures. First, confidentiality
ensures that only authorized entities have access to IoT devices and data. During
communication, the transferred data must not be tampered by intended or unintended
interference (integrity). Availability guarantees that data and devices are available for
authorized entities (users and services) whenever they are requested. Identification
& authentication is used to legitimate the data sent in networks and ensures that
only authorized devices and applications can connect to the infrastructure. The
concepts of privacy and trust must also be applied to IoT architectures. Furthermore,
security mechanisms must protect systems from attacks such as node capture
attacks performed on an IoT device or code injection attacks where malicious code is
injected in a device or service to gain control, intercept communication or force an
unorthodox behavior. These issues are already tackled in the conventional Internet
and, thus, corresponding mechanisms are already developed. However, the high
complexity of the IoT raises advanced security challenges.

FAULT TOLERANCE

The physical world is highly dynamic and changes occur frequently, sometimes un-
predictably. Accounting this in IoT infrastructures, digital representations of physical
entities and their connections among each other must be implemented reliably to
guarantee a functioning system regardless of frequently changing contexts. Mobile
things dynamically join and leave the IoT, generate and consume billions of parallel
events, which increases the diversity of possible contexts. An IoT infrastructure
must manage communication, storage and compute resources supporting important
characteristics such as reliability, safety, survivability, and fault tolerance (Bonomi
et al., 2014). Redundancies on different architectural levels should be introduced to
meet the challenge.

ENERGY SUPPLY

Although many physical things are already electrified and tethered on an electrical
grid, the majority of objects are unbounded to a location and lack of a steady
power supply. Additionally, the integration of battery packs in very small objects
is difficult. Autarkical power supply systems need to be developed to drive the
IoT vision, so that potentially a huge number of physical objects may participate.
Energy challenges can be tackled in different ways: First, energy consumption can
be reduced e.g. by employing passive systems such as RFID (Gubbi et al., 2013),
by using energy-efficient routing mechanisms between IoT devices (Kim, 2018) or
by applying hardware and protocols which support sleep modes (Al-Fuqaha et al.,
2015; Teklemariam, 2018). Secondly, concepts of energy harvesting can be utilized

2. FUNDAMENTALS 21

to collect energy from external sources such as solar power (Benoit et al., 2015)
or kinetic energy (Gorlatova et al., 2015). For instance, the small amount of power
provided by energy harvesters can be captured, stored and used by small, wireless
autonomous devices based on low-power electronics.

This list makes no claim to completeness but it shows some major challenges,
opportunities and how to handle them. Beside of the mentioned ones, the cost
factor also plays an important role. Since the IoT will have an enormous scale with
billions of devices in the future, the technology should be affordable in purchase and
operation.

2.1.3 IOT ARCHITECTURES

Like already pointed out, an IoT architecture can be very diverse in its configuration
based on the use case and the utilized technologies. Nevertheless, one can identify
several building blocks in IoT architectures, so that a generic type of architecture
can be derived. Basically, this generic architecture follows distributed systems which
implement IoT applications. Based on Latvakoski et al. (2014), we subdivide the
architecture into four central building blocks: (1) IoT devices, sensors and actuators,
(2) M2M communication technologies, (3) IoT information and services and, finally,
(4) IoT applications which include analysis and visualization. Figure 2.2 show the
generic IoT architecture consisting of the four building blocks and their interactions.

The things are the basic components in the IoT and, thus, represent the first building
block, which interacts with the physical world through sensors and actuators. We
focus on this building block in Section 2.2 in detail. Things communicate with cer-
tain M2M communication mechanisms and protocols among each other but also
with the servers in the Internet. Here, a so-called gateway may be necessary to
translate between different protocols. For instance, in WSNs several connectionless
protocols are used typically, since small sensor nodes might not be able to commu-
nicate with the Internet protocols directly. Section 2.3.1 and Section 2.4 deal M2M
communications in detail. The data send by M2M communication mechanisms is
stored, processed and made available through IoT information and services, which is
covered in Section 2.5. Finally, Section 2.6 deals with analyses and visualization of
IoT data, the application building block of IoT architectures.

The four building blocks interact with and depend on each other. Messages and data
flow in both directions. For example, while measured data by sensors is send by
IoT devices and stored in corresponding databases or visualized by applications,
application may send remote commands through web services of the IoT service
layer to devices to control an actuator and influence the physical world.

22 2. FUNDAMENTALS

IoT
devices

M2M
communication

IoT information
& services

Analysis &
visualization

Gateways

Message Pattern:
Publish/Subscribe
Message Queuing
Request/Response

Sensor data,
I/O interfaces

Database

Source: based on Herle et al. (2018)

Figure 2.2: Generic IoT Architecture

2.2 IOT DEVICES, SENSORS AND ACTUATORS

A thing in the IoT is of physical or virtual nature. Virtual things do not exist in the
physical world but in the information world. These things can be stored, processed
and accessed but do not exist physically. Application software, service representa-
tions or multimedia content belong to this group of things (Lee et al., 2013). Most of
them are either already connected to the Internet or easily and quickly wired.

Physical things, on the other hand, are objects in the physical world and can be
sensed, actuated upon and/or connected to. This means automatically that these
things are connected to the Internet and, therefore, somehow electrified. Thus, elec-
trical equipment such as industrial robots, consumer electronics, or most household
appliances are by nature already prepared to be part of the IoT. Non-electric things
need to be equipped with appropriate and embedded electronic systems to be able
to participate in the IoT world. Conceptually, physical things can be grouped into
the application fields of Industrial IoT (aka Industry 4.0) and consumer IoT, although
there is naturally no sharp line between them (Palattella et al., 2016). Figure 2.3
shows this distinction broken down further into different domains.

Like implied, things can be huge in size and already electrified by nature such as
cars or appliances, but can also be hitherto analogous objects such as sneakers
or garbage containers. Some things are already connected to networks through

2. FUNDAMENTALS 23

Network

Wearables

TVs

Clothes

Appliances

Monitoring

Automation

Heavy Machinery

Transportation

Smart Cities

Automation

Factories

Health care

Industrial IoT Consumer IoT

Source: Author’s illustration

Figure 2.3: Industrial and Consumer IoT

M2M communication (e.g. heavy machineries), while others are newcomers in in-
terconnecting with other systems. Depending on the type of IoT application (IIoT or
Consumer IoT), requirements are very different. This holds for instance in terms of
reliability and privacy of communication. Thus, the hardware and software configura-
tions of things and their requirements vary as well.

2.2.1 IOT DEVICES

The first application based on M2M communication and, thus, the first IoT applications
were realized by the RFID technology. So technically, an IoT device may only consist
of a tag which is attached to an object to provide its identity. In RFID a query signal is
transmitted by a RFID reader towards the tag. The reader receives reflected signals
which can then be used in conjunction with a database to identify the object. The
RFID tag itself can either be passive, active or semi-passive/active (Al-Fuqaha et al.,
2015).

Nevertheless, the IoT evolution is mainly driven by specific devices which can be
embedded into everyday objects. These embedded computer systems are the fun-
damental technology for the IoT (Ibarra-Esquer et al., 2017), although it is not a
new concept. Manley (1974) already introduced the term of embedded computers.

24 2. FUNDAMENTALS

He describes embedded computers as information processors which are physically
incorporated into electromechanical systems whose primary function is not data
processing, but integral from a design, procurement and operations viewpoint. Em-
bedded systems are implemented by using devices such as microcontrollers and
single-board computers. Recently, prototyping platforms such as Arduino, Raspberry
Pi or Beagle Bone, gained popularity to realize IoT projects in an affordable and easy
to use way. These miniaturized computers and other technological developments
such as 3D printers allow for rapid development which fosters also do-it-yourself
communities (Makers clubs), Hackspaces and citizen science in general (Haklay
et al., 2018).

Single-board computers are offered by several manufacturers and with different
architectures. The main components of a single board computer are the microcon-
troller with a Central Processing Unit (CPU), a storage and a power unit. Figure 2.4
illustrates an architectural view of a single-board computer, which is used in a sen-
sor network. Beside its main components, other possible units such as a sensing
(with analog-digital converter (A/D)) and actuating unit, a communication unit and a
location finding system are embedded.

Internet

Power Unit

Processing

Microcontoller

Storage
Transceiver

Sensing Communication

Sensor A/D

Power Generator

Location Finding System Actuator

Source: adapted from Akyildiz et al. (2002b)

Figure 2.4: Single-board computer as a sensor node

Regarding the processing unit, ARM-based systems are most prevalent and are e.g.
developed by ARM Limited, Texas Instruments, Samsung or Ericsson. Competing
architectures are, for instance, Microchip AVR with the ATmega series or x86 used
by Intel’s Atom or AMD’s Geode. These available microcontrollers are built in popular
prototyping platforms such as the Arduino family or several versions of the Raspberry
Pi. Both platforms are shortly introduced in the following paragraphs.

2. FUNDAMENTALS 25

ARDUINO

The Arduino is a physical computing platform involving Arduino boards and the
Arduino IDE to program the boards in an easy way. At this, the term physical
computing describes the activity of designing and creating interactive objects by
using software and hardware. The systems can sense and control the physical world
(O’Sullivan & Igoe, 2004). Physical computing includes using computing skills as well
as crafting and using electronics (Przybylla & Romeike, 2014). Thus, it is used for
rapid prototyping of interactive objects, which is e.g. applied in education or product
design. Software and hardware are open source and freely available, so that other
manufacturers may copy the design.

Table 2.1: Physical-Computing Platforms

Arduino
Uno

Arduino
Due

Raspberry
Pi

Raspberry
PI 3 B+

Processor ATmega
328P

ARM
Cortex-
M3

ARM11 1-
core

ARM Cor-
tex 4-core

Clock Speed (MHz) 16 84 700 1400

GPU speed - - 250 MHz 300/400
MHz

Bus width (bits) 8 32 32 64

System memory 2 kB 96 kB 256 1024

Flash memory 32 kB 512 kB - -

EEPROM 1 kB - - -

Input/Output (I/O) SPI, I2C,
UART,
GPIO

SPI, I2C,
UART,
GPIO

USB, SPI,
I2C, DSI,
UART,
SDIO,
CSI,
GPIO

USB, SPI,
I2C, DSI,
UART,
SDIO,
CSI,
GPIO

Source: Author’s illustration

26 2. FUNDAMENTALS

The Arduino boards are based on different microcontrollers. Most of the Arduino
boards are equipped with ATmega microcontrollers, some newer boards use ARM-
based microcontrollers. Table 2.1 shows the specifications of the Arduino Uno and
the Arduino Due. While the Uno uses a ATmega328 with 16 MHz, the Due is based
on an ARM Cortex with 84 MHz. Arduino Boards are extendable by so-called shields.
These are attached to the boards and provide further interfaces. For example,
several I/O shields offer wireless communication modules such as Bluetooth, WLAN
or ZigBee, other extend the memory of the board or attach low cost GNSS modules
for positioning.

RASPBERRY PI

With the market introduction of the first Raspberry Pi version in 2012, it becomes
an immediate success in part due to the low price of approximately 35 USD. By
connecting some peripherals (keyboard, mouse, SD card, monitor), a fully operating
computer which runs on a Linux operating system can be obtained (Johnston & Cox,
2017). The Raspberry Pi is like the Arduino boards popular among prototype builders
and hobbyists but also with the industry and benefits from the demand for embedded
systems induced by IoT applications. Unlike the Arduino boards, the Raspberry Pi is
solely based on multithreaded ARM technology. Since its potential operating systems
are Unix-like, it supports also high-level programming languages such as Python.

In its first version, the Raspberry was equipped with an ARM11 1-core processor
and 700 MHz clock speed (see Table 2.1). From there on, several successors were
introduced to the market with the latest model "Raspberry PI 3 B+" in 2018. The
newest version features an ARM Cortex 4-core processor and 1400 MHz clock speed
which is a significant improvement in performance. Connecting sensors and actuators
is provided by numerous I/O interfaces. Like for the Arduino boards, several shields
can be mounted to increase the scope of interfaces.

Arduino boards and Raspberry Pi are utilized in a variety of projects, which interact
with the physical world. By deploying also communication mechanisms to establish
a connection to the Internet, the boards can be used to construct smart things.
Johnston & Cox (2017) regard the Raspberry Pi and other low cost single-board
computers as an enabler technology for the evolution of the IoT.

2.2.2 SENSORS AND ACTUATORS

Although the first IoT application was solely designed for the identification of objects
using RFID tags, nowadays sensors and actuators are connected to IoT devices to
interact with the physical world. For this purpose, single-board computers offer digital
and analog I/O ports (or pins). The product ranges of sensors and actuators are very

2. FUNDAMENTALS 27

wide. Sensors monitor physical entities and may provide information about them.
They deliver information about the identity or measures of the physical state of entities
and their surroundings. On the one hand, they can be attached or embedded in the
physical structure of entities or, on the other hand, observe a specific environment,
where they identify and monitor entities. The latter one holds e.g. in environmental
monitoring. For instance, the PortoLivingLab project (Santos et al., 2018) deploys
a city-wide platform for continuous environmental monitoring, which is named the
UrbanSense platform. It is as a smart city application trying to measure and improve
the quality of urban living. The sensors used in the environmental monitoring can be
grouped into three classes: (1) Meteorological sensors: thermometer, hygrometer,
wind vane, anemometer, rain gauge, luxmeter and solar radiation, (2) quality of life
sensor: sound level meter and (3) air quality sensors: particulate matter detector,
CO, NO2, O3, gaseous. The sensors are attached to a Raspberry Pi forming a data
collection unit within the city of Porto. Basically, every imaginable sensor can be
connected to IoT devices and, thus, be part of the Internet. E.g. the Spanish IoT
company Libelium provides currently more than 120 sensors which can be connected
to their Arduino-based sensor platform named Waspmote (Libelium, 2018). Available
sensors range from the types of environmental sensors used in the PortoLivingLab,
over water and soil sensors to sensors used in precision farming.

Actuators can drive physical processes in the physical world by acting. They modify
the physical state of physical entities through moving them or activate/deactivate
functionalities of more complex ones. For example in building automation systems,
actuators control heating and cooling by maintaining the room temperature at a
certain level. By connecting these systems to the Internet, smart buildings emerge
whose actuators can be controlled by means of the Internet (Al-Fuqaha et al., 2015).
Other actuators may help to drive a car by itself or help a door become open or shut
(Isikdag & Pilouk, 2016). It is evident that actuators in industrial IoT applications
(Industry 4.0) such as automation are likely to increase productivity (Wang et al.,
2016).

2.2.3 SENSOR NETWORK (SN)

IoT devices can either directly communicate with the Internet, but often they are
arranged in Sensor Networks (SNs), sometimes also called Sensor and Actuator
Network (SAN) if actuators are involved (Serbanati et al., 2011; Tönjes et al., 2014).
Typically, the term Sensor Network is used throughout the literature regardless of the
deployment of actuators and/or sensors. We will stick to the common definition, so
that SN describe a network that is "composed of a large number of sensor nodes that
are densely deployed either inside the phenomenon or very close to it" (Akyildiz et al.,
2002a). A sensor node can be equipped with sensors to monitor physical entities and
events, and/or actuators to act on physical entities. The sensor nodes are usually

28 2. FUNDAMENTALS

scattered in a sensor field (Akyildiz et al., 2002b). Figure 2.5 shows sensor nodes
deployed in a sensor field as well as the communication architecture of SNs.

Sensor nodes can be arranged in a sensor field with different topologies. For instance,
nodes in a star topology may only communicate with a central controller, while a
peer-to-peer topology allows sensor nodes to communicate directly with each other,
so that ad-hoc and self-configuring networks can be formed (Yick et al., 2008).
Depending on the applied topology, the sensor nodes in a sensor field may send
and receive data from other sensor nodes, collect data and route data back to the
sink. If the sink is connected to the Internet, then it is also known as the gateway
to the Internet. It communicates with the task manager node and, finally, with a
user. The communication between the sensor nodes and the sink depend on the
applied technologies and use case. From a hardware point of view, a wired SN
is sometimes reasonable in security-related applications, however, technological
advances in wireless communications and electronics allow to develop Wireless
Sensor Networks (WSNs), which are low-cost, low-power and can monitor a large
area. Thus, WSNs have a significant improvement over traditional sensors and wired
SNs (Akyildiz et al., 2002a). From a software point of view, several radio technologies
are utilized, which are discussed in Section 2.4.1.

Internet

Task Manager
Node

User

Sink
(Gateway)

Sensor Field

Sensor Nodes

Source: based on Akyildiz et al. (2002b)

Figure 2.5: Sensor nodes in a Wireless Sensor Network (WSN)

A specialized application of WSNs are Geo Sensor Networks (GSNs) (or Wireless
Geo Sensor Network (WGSN)), which can be loosely defined as a sensor network
that detects, monitors and tracks environmental phenomena and processes in geo-
graphic space. Here, geographic space may range in scale from a room to highly
complex dynamics of an ecosystem region (Nittel et al., 2004; Nittel, 2009). On
multiple abstraction levels in GSN, the concepts of space, location, topology and
spatiotemporal events are modeled. This ranges from the physical deployment of

2. FUNDAMENTALS 29

the sensors in a sensor field, its communication topologies, the nodes relationships
to observed phenomena, to mobile sensors either being self-propelled or being
attached to moving objects. In GSN, geospatial information is collected and analyzed.
The sensor node can provide continuous streams of geospatially-rich information
(Nittel et al., 2004). Based on these capabilities and characteristics, a variety of
applications becomes possible. Examples are monitoring of structures (Glabsch
et al., 2011; Herle et al., 2018; Alonso et al., 2018) or mass movements (Walter &
Nash, 2009), environmental monitoring (Werner-Allen et al., 2006; Terhorst et al.,
2008) or agricultural systems (Gutierrez et al., 2014).

2.3 INTERNET COMMUNICATION

Before taking a detailed look at the M2M protocols in the IoT, the conceptual com-
munication models and patterns in distributed architectures are introduced in this
section. M2M protocols implement some of these patterns with their advantages
and disadvantages for communication in certain scenarios. Further, we give a brief
introduction of the basic protocols of the Internet and, thus, the IoT. Therefore, this
section can be regarded as a foundation for the following section, where we introduce
the M2M protocols in the IoT.

2.3.1 MESSAGING PATTERNS IN DISTRIBUTED ARCHITECTURES

Basically, in distributed computing environments two interaction models dominate.
First, the synchronous interaction model represents a pattern where a procedure
(function or method) is invoked remotely from a caller which blocks and waits until
the called code completes execution and returns a result. The calling system does
not have the processing control, it depends on the return of control from the called
system. In asynchronous interaction models the caller retains the processing control
since he does not block and wait for the called code to return a result. This model
often requires an intermediary layer to handle the exchange of requests such as a
queue. In asynchronous interaction models, every participant retains its processing
independence. Regardless of the state of other participants, they may continue
processing (Curry, 2004).

Several synchronous and asynchronous messaging patterns exist but only a subset
is suitable for applications in IoT. Besides the synchronization, patterns can be
categorized further through the properties of space and time decoupling. Space
decoupling means that the interacting parties do not need to know each other to
communicate. In direct communication models without an intermediary layer, this
cannot be achieved obviously. Time decoupling describes that both communicat-
ing parties do not need to be actively participating in the action at the same time.

30 2. FUNDAMENTALS

Again, in direct communication, this is hardly applicable (Eugster et al., 2003). For
instance, the pattern message passing represents the earliest and a low-level form
of distributed communication where a receiver (or consumer) listens synchronously
on a previously established network channel and a producer sends messages asyn-
chronously through that channel. It is a direct communication between sender and
receiver, thus, they are coupled in space and time. Since the sender does not wait
for a response, it is decoupled from synchronization while the receiver is not (Eugster
et al., 2003). On the other hand, indirect communication systems such as message
queuing (see Section 2.3.1.2) require an intermediary layer and, thus, sender and
receiver may be decoupled from space, time and/or synchronization.

The most important messaging patterns discussed for IoT systems are presented
in the following. The protocols are classified in the dimensions of space, time and
synchronization decoupling and their applicability in the IoT context.

2.3.1.1 Request/Response

Like described, the message passing pattern implements a direct communication
mechanism between a sender and a receiver of a message. Hence, it realizes a
one-way communication. However, communication between distributed entities often
requires two-way interaction. This holds e.g. for a program which calls a function and
expects a returning value or an application executing a query and receives a query
result (Hohpe & Woolf, 2003).

The Request/Response pattern (sometimes also Request/Reply) describes a two-
way direct communication pattern between two participants. These are named

1. Requester : Sends a request message and waits for a response message.

2. Responder (Replier): Receives the request message, processes it and replies
with a response message.

Since it represents a direct communication, requester and responder are tightly
coupled in space and time. The requester needs to know the location (responder) to
send the message to (Eugster et al., 2003). Synchronization decoupling depends on
the used methods and the desired behavior. The first applications for the request/re-
sponse pattern were Remote Procedure Calls (RPCs) for procedural languages and
Remote Method Invocations (RMIs) for object-oriented contexts to facilitate distributed
programming. Originally, RPC and its derivatives describe synchronous interaction
models. A requester, which calls a procedure or method by RPC (or RMI), blocks its
execution, waits for the reply message and processes the response. Thus, requester
and responder are not decoupled from synchronization. However, Eugster et al.

2. FUNDAMENTALS 31

(2003) argue that several implementations avoid the tightly coupled synchronization
by introducing either a one-way modifier in the request to indicate that the requester
does not expect a response (which is basically a fallback to the message passing
pattern), or a mechanism to process the response later in another thread so that the
caller thread is not blocked. The latter one is known as asynchronous callback and
decouples the two participants from synchronization. In this case, the sender sets up
a callback for the response of the request which is executed when the reply message
arrives. The sender thread is not blocked because a separated thread listens for
reply messages and invokes the corresponding callbacks (Hohpe & Woolf, 2003).

The request/response pattern with asynchronous callbacks is heavily used in today’s
Internet and web applications. The standard protocol in the Web is HTTP (see
Section 2.4.2.1) which implements a request/response pattern. Thus, it is also highly
relevant for the IoT. Figure 2.6 illustrates the request/response pattern in the Internet.

ClientServer

Request

Response

Source: Author’s illustration

Figure 2.6: Request/Response mechanisms

In the pattern the requester which sends the request is also called client, while the
responder that receives the request, processes it and sends a response back is
called the server. A server, which provides e.g. web pages, is known as a web server.
Similarly, a client in the Web is called a web client. The web client pulls a website
from a server, thus request/response represents a pull technology. Pulling is defined
in Definition 2.1.

Definition 2.1 (Pull communication)
Pulling describes the consumer’s mechanism to poll the provider to check for
any messages or data.

32 2. FUNDAMENTALS

2.3.1.2 Message Queuing

The Message Queuing pattern is an asynchronous interaction model which introduces
an intermediary layer to exchange messages between participants in the system. A
queue is used to store messages published by sending systems (see Figure 2.7).
Receiving systems pull the message queue to check for messages. If a message is
available the polling system removes it from the queue and processes the message.
The standard queue, which can be found in messaging systems, is the First-In First-
Out (FIFO) queue. It works like the name suggests: the first message sent to the
queue is the first message which is retrieved from it (Curry, 2004). A queue has
several attributes such as a name for addressing, a size or a sorting algorithm.

Like shown in the figure, the queue is located between the sending systems and
the receiving systems. Therefore, the pattern realizes an indirect communication
mechanism, which provides decoupling of space and time of the participating systems.
Further, the producer-side is also decoupled from synchronization. But since the
consumers synchronously pull messages, the message queue does not fully provide
synchronization decoupling (Eugster et al., 2003).

Receiving SystemsSending Systems

Source: Author’s illustration

Figure 2.7: Message Queuing

Message-centric approaches such as message queuing can be used to implement
Message-Oriented Middleware (MOM). A MOM provides distributed communication
based on the asynchronous interaction model. Participants are not required to
block execution and wait for a message. But unlike in request/response, sending
participants have neither a guarantee that their messages are read by others nor
about the time the message delivery will take (Curry, 2004). These are not determined
by the producers but by the receiving applications. For instance, a reliable queue or
a QoS mechanism can be used to ensure message delivery (Maheshwari & Pang,
2005; Sachs et al., 2009).

2. FUNDAMENTALS 33

2.3.1.3 Publish/Subscribe

Another communication mechanism to implement MOMs is described by the Publish/-
Subscribe pattern. It finds wide acceptance when a one-to-many interaction style is
required in distributed systems (Oki et al., 1993). The pattern connects producers and
consumers of messages through an intermediary layer. Consumers may subscribe to
whatever kind of message they are interested in. At this, subscribing denotes the act
of sending a subscription. Further, producers may publish messages anonymously
and asynchronously. If the message published by the producers match a subscription,
the intermediary distribution layer pushes the corresponding data to the consumers
(Eugster, 2007). The publish/subscribe pattern is depicted in Figure 2.8.

ConsumersPublisher

Distribution
Layer

Event

Notification

Source: Author’s illustration

Figure 2.8: Publish/Subscribe interaction scheme

Like shown in the figure, while a message issued by a publisher is called an event in
publish/subscribe systems, the act of delivering is denoted by the term notification
(Eugster et al., 2003). Multiple consumers can be notified with the same event
depending on their subscriptions, which is conceptually different from message
queuing. In the figure the blue event is send simultaneously to two consumers.
Consumers are also called subscribers, while publisher are also named generators of
events. The intermediary distribution layer in MOMs are often referred to as Message
brokers or simply broker (Curry, 2004).

Because of the indirect communication channel between producers and consumers
of messages, they are decoupled in space and time. This means, on the one hand,
that producers of events do not need to know the consumers. On the other hand,
publishers might publish events even if the consumers are disconnected and, the
other way around, consumers might receive notification even if the original producer
of the event is disconnected (Eugster et al., 2003). Furthermore, consumers and
producers are fully decoupled from synchronization. Unlike the message queuing
pattern, notifications are pushed to consumers (see Definition 2.2), so that they
are asynchronously notified, while performing some concurrent activity. Thus, both,

34 2. FUNDAMENTALS

production and consumption of events might happen in an asynchronous manner.

Definition 2.2 (Push communication)
Pushing describes the procedure, where the provider sends relevant messages
to the consumer as soon as the provider receives them. Consumers instruct the
providers in advance to push relevant messages to them.

Publish/subscribe mechanisms can be realized with different subscription mecha-
nisms. According to Eugster (2007), in the first publish/subscribe systems, consumers
could specify their interest by subscribing to a group. Since these groups appeared
also under the term "topics", the underlying pattern is denoted topic-based publish/-
subscribe (sometime also subject-based publish/subscribe). A topic T is a group
T which consumers join by subscribing to it. If a producer publishes an event on
topic T , the notification is broadcasted among the members of T . In these systems,
participants can publish events as well as subscribe to individual topics which are
keywords. Topics are mapped to distinct communication channels and are an event
service offering the operations publish() and subscribe(). Usually, the topics
are ordinary strings which are compared to the strings given in subscriptions but
additional improvements extend this topic-based scheme. For instance, several
systems use hierarchical addressing to subdivide and organize topics. A consumer
subscribed to a specific node in the hierarchy, also receives events which are marked
with subtopics of that node. For the M2M protocol MQTT this mechanism is described
in detail in Section 4.2.

Besides topic-based, the pattern can also be implemented by content-based or
type-based publish/subscribe. Content-based publish/subscribe describes a pub-
lish/subscribe pattern where subscribers may choose different filtering criteria along
multiple properties. The information contained in each event is defined in an event
schema. A content-based subscription is evaluated against that event schema and
the content of the event. Hence, content-based publish/subscribe describes a more
general approach and can be used to implement the original topic-based pattern
(Banavar et al., 1999). In type-based publish/subscribe events are objects which can
be of different application-defined types. Eugster et al. (2001) argue that by defining
event objects and match them with types, a closer integration of object-oriented
languages and the middleware is enabled. The type-based subscription respects
type safety. Consumers may subscribe to a specific event type, which can also be
hierarchical structured with subtypes. The subscriber receives all events of that par-
ticular type and its subtypes (Eugster et al., 2001). However, if the publish/subscribe
pattern is integrated into object-oriented programming languages, passing objects to
other languages is an interoperability issue.

2. FUNDAMENTALS 35

SubscriberPublisher

Subscribe

Notify

Notify

Notify

Source: Author’s illustration

Figure 2.9: Notification scheme

2.3.1.4 Notification (Observer Pattern)

The publish/subscribe pattern can also be realized without an intermediary layer, so
that a direct communication between event publisher and subscriber is possible. This
mechanism is called Notification, or Observer pattern, and provides a limited form of
publish/subscribe without decoupling of space and time. However, synchronization
decoupling still holds. The pattern is illustrated in Figure 2.9.

Subscribers register their interests such as a change in a resource directly with
the publisher. The publisher manages the subscriptions and connections to the
subscribers by itself. Whenever e.g. a resource a subscriber is interested in changes,
the publisher notifies the corresponding subscriber with an event in a push-based
manner.

2.3.1.5 Data Streams

In IoT, data streams are important communication mechanisms. A data stream itself
is not communication pattern such as request/response or message queuing, but the
previously described communication patterns can be used to initiate data streams. A
data stream is defined as a sequence of data tuples (see Definition 2.3).

Definition 2.3 (Data Stream)
A data stream S can be defined as an unbound sequence of tuples pj of the form
pj = (a1, a2, ..., an, t) where ai denotes attribute i, and t a common timestamp.
The frequency and ordering of arriving tuples pj of S is unpredictable and can
change over time.

From the nature of the different communication patterns presented before, not ev-
ery pattern is suitable for realizing data streams. Typically, patterns based on the

36 2. FUNDAMENTALS

synchronous interaction model and a pull communication cannot be used for data
streams. Consider a producer of data that wants to initiate a data stream with a
request/response pattern. After sending a tuple of a data stream to the server, the
producer would block and wait until a response for his request arrives. So, basically
producer and consumer of a data stream should be decoupled from synchronization.
From the patterns introduced before, this holds especially for the publish/subscribe as
well as the observer pattern. In parts, it also holds for message passing and message
queuing. However, since the consumer is not decoupled from synchronization (e.g.
in message queuing the consumer has to actively poll the queue), a fully push-based
data stream from producer to consumer cannot be realized.

2.3.2 INTERNET PROTOCOL SUITE

Basically, IoT means connecting things to the Internet by using appropriate protocols
and communication patterns. The protocol stack of the Internet is defined through the
Internet protocol suite, which is also known as TCP/IP model since the foundational
protocols in the suite are TCP and IP. IoT devices can connect to the Internet either
by implementing a TCP/IP protocol stack on their own or through gateways like in
SN. The TCP/IP model is illustrated in the middle column of Figure 2.10.

OSI model TCP/IP model Implementations

Application (7)

Presentation (6)

Session (5)

Application HTTP, FTP, SMTP, etc.

Transport (4) Transport TCP, UDP

Network (3) Internet IPv4, IPv6

Data Link (2)

Physical (1)
Link Ethernet, Token Bus, etc.

Source: based on Gessler & Krause (2015)

Figure 2.10: Layers of OSI reference model, TCP/IP model and protocol
examples

Figure 2.10 assigns the layers of the TCP/IP model to layers of the Open System
Interconnection model (OSI model), which is a conceptual communication model
for telecommunication or computing systems (see ISO standard in ISO/IEC JTC
1 (1994)). The OSI model consists of seven layers and was developed based on

2. FUNDAMENTALS 37

the less detailed TCP/IP model. The TCP/IP model’s lowest component layer is the
link layer which consists of a group of methods and communication protocols that
operate on the link a host is physically connected to. It is responsible for transmitting
data packets between two different hosts on the same link. Different wired or wireless
link layer protocols can be used such as Ethernet or protocols of the IEEE 802 family
(see Section 2.4.1).

The Internet layer and the transport layer are the core components in the TCP/IP
model. The Internet layer is responsible for addressing and routing of datagrams
through the network. The layer determines and forwards the received packets to
reach the next location in the network. Mainly the Internet Protocol (IP) is used in the
layer. On the other hand, the transport layer performs host-to-host communication on
the same or different hosts and on the same or remote networks. The Transmission
Control Protocol (TCP) is used for reliable and connection-oriented data transmission,
while the User Datagram Protocol (UDP) is the unreliable counterpart providing a
connectionless datagram service for the benefit of reduced latency. It depends on
the application and its requirements if TCP or UDP is applied. For a detailed view on
the IP, the TCP and the UDP protocol, the reader may consult e.g. Tanenbaum &
Wetherall (2013).

Finally, the application layer covers protocols, which work with application software
and use the network infrastructure to exchange application specific data. Thus,
it implements the so-called process-to-process communication. Protocols in the
application layer are, for instance, HTTP for the Web or SMTP for exchanging emails.
In the IoT M2M application layer protocols are applied, which are discussed in detail
in Section 2.4.2.

2.4 M2M COMMUNICATION STACK

The direct communication between devices by wired or wireless communication
channels is called M2M. It refers to different protocols and technologies on different
layers on a communication stack. Since in the IoT every device can possibly speak to
each other, M2M is a building block and essential in the IoT vision. It enables the flow
of data between machines but also between machines and humans ultimately (Lee
et al., 2013). But like the term suggests, M2M does not need human intervention, the
transfer of information and commands between two machines is independent and
automatically induced.

However, the domain of M2M communications is quite wide and not every standard
or protocol is usable for applications in the IoT. Given the Internet protocol suite
for basic interaction in the Internet (see Section 2.3.2), various protocols on the link
layer and the application layer can be chosen. On the link layer, suitable wired and

38 2. FUNDAMENTALS

wireless communication technologies should be applied to ensure the connectivity.
IoT devices, which are deployed in WSNs, have different requirements and, thus, use
different mechanisms and protocols to communicate potentially through a gateway
with the Internet. Other devices implement a TCP/IP stack by themselves and,
therefore, have access to the Internet directly. So, IoT architectures might become
quite complex with various layers. Figure 2.11 illustrates an architecture with three
main layers: a sensor layer, a gateway layer and an application layer. Each layer
includes corresponding M2M protocols.

Tilt GPS Puls Humidity Pressure ...

Sensors & actuators

ZigBee BTLE 6LoWPAN LoRA NFC ...

Sensor network

Sensor layer

Satellite optical LTE WiFi Ethernet ...

Gateway network

TCP UDP

Transport

Gateway layer

IPv4

Internet

HTTP CoAP MQTT XMPP AMQP ...

IoT application protocols

IPv6

Source: adapted from Ray (2018)

Figure 2.11: M2M protocol stack in IoT

Wireless communication protocols are applied in the sensor layer. Some important
ones are presented in detail in Section 2.4.1. The gateway layer consists of the
used gateway network and the associated protocols to establish a connection to the
Internet, which is mainly IP and TCP respectively UDP. If an IoT device provides
a network connection and can use a TCP/IP stack, the gateway layer might be
merged with the sensor layer. Finally, the IoT application protocols cover the high-
level communication mechanisms (application layer) which are employed in the
IoT to enable the communication between things. They are introduced in detail in
Section 2.4.2.

2. FUNDAMENTALS 39

2.4.1 WIRELESS COMMUNICATION IN THE IOT

The sensor and the gateway layer utilize several protocols to ensure Internet con-
nectivity. Like described in Section 2.2.3, the connectivity of sensor nodes in WSNs
rely on different radio protocols to transfer the data to a gateway which is directly
connected to the Internet. The protocol overview in Figure 2.11 already introduced
a sensor layer and associated protocols to communicate between sensor nodes
in a sensor field as well as a gateway. Further, the gateway layer utilizes various
protocols to establish an Internet connection. Like mentioned, sensor nodes can also
directly communicate with the Internet omitting the gateway layer if suitable hardware
is applied and an Internet protocol stack is in place.

WPAN

Bluetooth LE
ZigBee

6LoWPAN

WLAN

802.11 family

WMAN/WNAN

WiMAX/ZigBee-NAN

WWAN

Cellular:
2G/3G/4G

LTE
5G

LPWAN:
LoRa
Sigfox

Short range
(10-100 meter)

Short/Medium
range

(100-1000 meter)

Medium range
(5-10km)

Long range
(up to 100km)

Source: Author’s illustration

Figure 2.12: Key wireless M2M technologies for the IoT

Nodes in sensor networks as well as things in the IoT often require wireless technolo-
gies that provide connectivity for IoT applications. Wireless communication utilizes
different radio frequency (RF) signals between 9 kHz and 300 GHz. RF are elec-
tromagnetic waves, which consist of an electric and a perpendicular magnetic field
traveling at the speed of light. The oscillation of the waves determines their frequency
f which is measured in Hertz (Hz). The wavelength λ is the distances, which is
traveled by one complete cycle and, thus, inversely proportional to the frequency.
Hence, lower frequencies have longer wavelengths. The amplitude indicates the

40 2. FUNDAMENTALS

strength of the RF signal. Amplitude or frequency can be modulated to transmit anal-
ogous data: amplitude modulation (AM) or frequency modulation (FM). Digital signals
are transmitted by modulation techniques such as Frequency Shift Keying (FSK) or
Phase Shift Keying (PSK) (Gessler & Krause, 2015). RF transmitters have a specific
Transmitter Power Output (TPO), which is the actual amount of power measured in
watts or decibel-milliwatts (dBm). Depending on the radio waves (frequency and
power) and modulation, the applied protocols vary in power consumption, physical
antenna size, travel distance, data size and so on. So the needs and requirements
to the wireless communication technology are determined by the IoT use case. For
instance, if massive amounts of data have to be transferred, a high-bandwidth solu-
tion is needed and, thus, a higher frequency and power. If, on the other hand, long
distances have to be traveled, a lower frequency must be chosen.

According to Medina et al. (2017), the coverage of wireless technologies is the
most important designing parameter of a communication network for IoT solution.
However, parameters such as error rate, transmission rate or energy consumptions
are also important depending on the use case and differ from protocol to protocol.
Thus, different wireless M2M protocols and standards on the link layer have been
developed to provide connectivity. Figure 2.12 orders and compares some standards
and functional protocols by the working range. Additionally, the protocols are grouped
into the wireless network categories Wireless Personal Area Network (WPAN), WLAN,
Wireless Metropolitan Area Network (WMAN)/Wireless Neighborhood Area Network
(WNAN) and Wireless Wide Area Network (WWAN).

2.4.1.1 Cellular Networks

Cellular networks (or mobile networks) are WWANs communication networks whose
cells are distributed over the land area. Each cell is supplied by a cellular radio
tower equipped with transceivers to transmit voice, data or other contents. The cells
are joined together to form a cellular network to provide radio coverage over wide
geographic areas. Transceivers such as mobile phones, laptops or IoT devices may
communicate with each other through this network. Telecommunication providers
have established and operate cellular network for transmitting voice and data in most
countries of the world. Different standards have been developed over time increasing
the capacity and speed of cellular networks:

The GSM1 standard was introduced in 1990 as the first digital standard, which is used
for telephony and packet switching data transmission. It is also called "2G" since it
describes the second generation after analogous cellular networks. It operates in
different frequency bands: for instance, GSM 900 uses the 900 MHz frequency band,

1Global System for Mobile Communications

2. FUNDAMENTALS 41

which results in a data rate of 9.6 kbit/s. GPRS2 and EDGE3 (2.5G) were introduced
based on the GSM standard to increase data rates to 57.6 kbit/s, respectively
384 kbit/s. The 3G standards (UMTS4 and HSPA/HSDPA/HSUPA5) are the next
generation of cellular networks. They provide data services for videotelephony and
mobile broadband Internet access with a data rate of up to 7,2 Mbit/s (Gessler &
Krause, 2015). Subsequently, LTE6 together with LTE-Advanced and LTE-Advanced
Pro are the fourth generation (4G) of mobile telephony. It uses a different radio
interface and other improvements to increase data rate up to 600 Mbit/s (Sauter,
2015). Finally, the fifth generation of cellular mobile communications (5G) will succeed
4G, 3G and 2G in the future. These coming cellular standards target at high data
rates, reduced latency, energy saving, cost reduction and massive device connectivity
(Palattella et al., 2016).

Cellular networks can be used to directly connect IoT devices to the Internet (Kara-
giannis et al., 2015). But due to their inherent complexity and energy consumption,
they are currently less suitable for peripheral IoT nodes (Zanella et al., 2014). Fur-
thermore, the number of things in the IoT is expected to be massive, which limits
the applicability of traditional cellular networks (Augustin et al., 2016). However,
Palattella et al. (2016) argue that by the design principles of the coming cellular
network generation, 5G is ready to enable the vision of a truly global IoT. They
conclude that 5G will constitute an essential enabler of an IoT roll-out shaping new
business models by transforming the cellular value chain.

2.4.1.2 WLAN

For the different wireless network categories, the standardization body 802 of the
IEEE standards association (D’Ambrosia, 2018) develops standards for the physical
(layer 1) and the data link layer (layer 2) in the ISO/OSI reference model (see
Figure 2.13). The data link layer is further subdivided into the media access control
(MAC) layer responsible for accessing the transmission medium and the logical link
control (LLC) layer that multiplexes various network protocols for transmission by the
MAC layer.

The wireless variants of the Ethernet protocols (802.X standards) are developed
and specified in the 802.11 standard family. The original Ethernet or LAN standards
describe a complete Internet protocol stack by wire with TCP/IP (see Section 2.3.2).

2General Packet Radio Service
3Enhanced Data Rates for GSM Evolution
4Universal Mobile Telecommunication System
5High Speed Packet Access/High Speed Downlink Packet Access/High Speed Uplink Packet Access
6Long Term Evolution

42 2. FUNDAMENTALS

In comparison to the wired LAN standards, the main derivations for the WLAN proto-
cols were made in some management operations in the MAC layer and a complete
redevelopment of the physical layer. Since over the course of time advancements
were made in RF technologies, multiple physical layers are defined in sub specifica-
tions. Although the first standard 802.11 was specified in 1997, the breakthrough
and wide application of the WLAN technology was achieved first with the introduction
of the extension 802.11b in 1999 (Sauter, 2015). The extension exploits the 2.4
GHz frequency band, known as Industrial, Scientific and Medical Band (ISM) which
is public domain in most countries, and a maximal TPO of 100 mW. Theoretically,
data rates of 11 Mbit/s are reachable between sender and receiver traveling short
distances from 10 to 20 meters, however, bad conditions reduce the rate to 1 Mbit/s
since redundancies have to be integrated. Further versions of the 802.11 standard
improved the data rate by different modifications. The most recent version 802.11ac
occupies the 5 GHz ISM band and with improved channel bonding, modulation and
other approaches, data rates of 6.93 Gbit/s are possible (Sauter, 2015). Depending
on the deployment site (e.g. outdoors or indoors), the 802.11ac protocol offers a
range of about 100 meters under ideal conditions (Gessler & Krause, 2015).

The WLAN standard and its different versions define the physical and the data link
layer in the OSI reference model. Because of the potentially high data rates, the
upper layers may directly implement the Internet protocol suite. However, the high
power consumption disqualifies the WLAN standard for WSNs consisting of small
and resource-restricted devices. The following protocols such as protocols based on
the 802.15.4 standard are better suited for these setups.

Upper

Layers

802.2: logical link control (LLC)

802.1: MAC-Bridging
Data Link

Layers

802.11 MAC 802.15 MAC

802.11

PHY

802.15

PHY

Physical

Layer

802.1:

overview,

architecture,

management

WLAN WPAN

Source: based on Gessler & Krause (2015)

Figure 2.13: IEEE 802 standards in the ISO/OSI model for WPAN and
WLAN

2. FUNDAMENTALS 43

2.4.1.3 WSN Protocols

802.15.4

In 802.15 several standards for WPANs are specified. The IEEE 802.15.4 is a widely
used protocol by WSNs. It specifies the physical and data link layers for small devices
with limited communication capabilities (Alonso et al., 2018). Unlike 802.11 it focuses
on exchanging small packets with simultaneously a low energy consumption. Thus,
it can transmit data with 250 kbit/s in the 2.4 GHz ISM band or 20 kbit/s in the 868
MHz ISM for Europe, respectively 40 kbit/s in the 915 MHz band for North America.
As will we see later, 802.15.4 has been established as the main physical and link
protocol for WSNs mainly because of the low power consumption. Hence, several
WSN protocols are based on IEEE 802.15.4. standard such as ZigBee or 6LowPan.

ZIGBEE

The ZigBee standard was developed and released by the ZigBee Alliance in 2004
aiming at cost-effective home automation applications. In 2007 for industrial environ-
ments, ZigBee PRO was released focusing on application with low data rate and low
power consumption. Since it uses the IEEE 802.15.4 in the physical and the data link
layers with the mentioned frequencies and features, it is designated to be applied
in WSNs of limited size. Thus, it allows a maximum communication speed of 250
kbit/s (in the 2.4 GHz band) and maximal distances between sender and receiver
up to 50 meters (Alonso et al., 2018). The protocol stack of ZigBee is illustrated in
Figure 2.14.

ZigBee application layer

ZigBee network layer

IEEE 802.15.4 MAC

IEEE 802.15.4

Source: based on Alonso et al. (2018)

Figure 2.14: ZigBee stack

Like mentioned, the IEEE 802.15.4 is used in the lower layers. The ZigBee network
layer is responsible for the formation of the network through node discovery mecha-
nisms, the allocation of addresses and the routing of the messages (Alonso et al.,
2018). With this layer, ZigBee supports decentralized network topologies such as

44 2. FUNDAMENTALS

meshes for failsafe implementations. If sensor nodes break down, alternative paths
through the network can in case be found. The application layer implements an
application framework consisting of an Application Support Sublayer (APS), ZigBee
Device Objects (ZDOs) and manufacturer-specific "application objects". Each device
in the network has a digital ZDO which determines the role in the network (coordina-
tor, router or end device) and initiates the sublayers. The application objects are the
actual use-case specific objects, while the APS represent the interface between the
network layer and the object (Gessler & Krause, 2015).

6LOWPAN

IPv6 over Low-power WPAN (6LoWPAN) is an open standard which is defined in
RFC 6282 by the Internet Engineering Task Force (IETF) (Hui & Thubert, 2011). The
standard enables the use of IPv6 over IEEE 802.15.4 in the 2.4 GHz band (Olsson,
2014) and, thus, allows the direct interaction between the Internet protocol and small
devices, which was the initial idea behind the development (Alonso et al., 2018).
Therefore, 6LoWPAN is an adaption layer between the network layer and the data
link layer. The stack is shown in Figure 2.15.

Application layer

UDP, TCP

IPv6

6LoWPAN

IEEE 802.15.4 MAC

IEEE 802.15.4

Source: based on Olsson (2014)

Figure 2.15: 6LoWPAN stack example

This adaption layer is integrated to optimize IPv6 performance over the IEEE 802.15.4
standard. A compression format for IPv6 headers and payload is established to
support low-power constrained networks. A so-called border router is attached to
the WSN and transparently performs the conversion between IPv6 and 6LoWPAN
packets. This way, IoT nodes in a 6LoWPAN network can interact with any IPv6 host
in the Internet through the border router (Zanella et al., 2014).

2. FUNDAMENTALS 45

BLUETOOTH & BLE

Bluetooth was first proposed by Ericsson in 1994 for short distance wireless commu-
nications to substitute wired connections between portable and/or stationary devices
(Gessler & Krause, 2015; Alonso et al., 2018). Currently, the IEEE 802.15.1 task
group addresses the Bluetooth technology. The specification ensures high security,
but simultaneously low power consumptions and low cost. It operates in the 2.4 GHz
ISM band and uses different modulation techniques to reduce interferences with other
protocols. Since version 1.0, the standard is consequently being evolved up to the
most recent version 5.0. The advancements of the newer versions cover interesting
features for IoT application such as improvements in energy consumptions. With
Bluetooth Low Energy (BLE) an especially energy-saving variant was developed.
However, Bluetooth is designed for small distances in WPANs up to 10 meters in
early version, and theoretically up to 100 meters in version 5.0.

LORA & LORAWAN

Long Range (LoRa) is a patented physical layer protocol, which is developed by
the LoRa Alliance. Manufacturer of the chips and patent owner is Semtech USA.
It operates in the license-free ISM bands, especially 433 MHz, 868 MHz (Europe)
and 915 MHz (North America). It allows for very long range transmissions (> 10 km)
with low power consumption, thus, it is a Low Power Wide Area Network (LPWAN)
protocol. The stack of LoRa is shown in Figure 2.16.

Customer application

LoRaWAN

LoRa MAC

LoRa PHY

ISM band

Source: derived from Bouguera et al. (2018)

Figure 2.16: LoRa & LoRaWAN layer stack

LoRa PHY is the layer which provides the physical transmission between end devices
and the gateway. It uses a proprietary spread spectrum modulation scheme based on
Chirp Spread Spectrum (CSS) modulation (Semtech Corporation, 2013). Resistance
to inferences is the main advantage of this modulation technique. In spread spectrum

46 2. FUNDAMENTALS

techniques the signal is spread in the frequency domain, meaning that the signal gets
a wider bandwidth. A chirp impulse is a sinusoidal signal which increases (up-chirp)
or decreases (down-chirp) in time with respect to the bandwidth. For instance, an
up-chirp signal consists of up-chirps that start at the lowest frequency and increases
to the highest frequency of the frequency band before the next up-chirp continues
the signal. In LoRa PHY these chirp signals are the carrier signals where a message
is encoded on. For transmitting data, the chirps are cyclically-shifted resulting in
frequency jumps that defines how information is encoded (a LoRa symbol). A LoRa
symbol consists of 2SF chips, where SF is the Spreading Factor ranging from 7 to
12, and cover the entire frequency band (Augustin et al., 2016). Since LoRa allows
for error correction, some of the SF bits are used for redundant information (Casals
et al., 2017). Depending on the SF, the physical bit rate, the transmission range and
the power consumption differ. Higher SFs have a longer range but a lower physical
bit rate. In the physical message, a LoRa MAC message is transmitted. The layer
implements some useful mechanisms such as acknowledgements, receive windows
or retransmissions (Casals et al., 2017).

LoRa is the related modulation in the physical layer for LoRaWAN (Long Range Wide
Area Network), which is a wireless communication technology for connecting end
devices with a network server. End devices and gateways form WSNs in star-of-
stars topology (Augustin et al., 2016). LoRa PHY is used to communicate between
gateways and end devices with very long ranges, while a LoRaWAN message is
encapsulated in the message. The gateways receive the messages and forward the
LoRaWAN message with a TCP/IP stack to the network server. Thus, LoRaWAN
describes a system architecture rather than a single protocol.

OTHERS WSN PROTOCOLS

Besides the introduced protocols for WSNs, a variety of other protocols exists. For
very short ranges, Near Field Communication (NFC) is a communication technology
which enables interaction between two NFC devices in few centimeter ranges. It
is specified in ISO norm 18092:2013 (ISO/IEC JTC, 2013). In home automation,
protocols such as KNX or Z-wave are used by different manufacturers. For instance,
Z-wave operates also in the 868 MHz ISM band with FSK modulation, which provides
a communication range of around 30 m in buildings but with a data rate of about 10
kbit/s. Typically, it can be used to remotely control heating, ventilation, air conditioning
or lightning (Gessler & Krause, 2015). Another LPWAN protocol and main contender
to Long Range Wide Area Network (LoRaWAN) is SigFox also operating in the
868 MHz ISM band with an average coverage of 30-50 km in rural and 3-10 km in
urban areas including obstacles. Its data rate is 100 bit/s and, therefore, targets at
applications that have low data flow requirements such a smart parking, smart meter
or environmental monitoring (Teklemariam, 2018).

2. FUNDAMENTALS 47

2.4.2 IOT APPLICATION LAYER PROTOCOLS

The IoT application layer connects sensor nodes and/or gateways utilizing the Internet
with applications. Application layer protocols update servers and end-points with the
latest IoT device values (e.g. sensor measurements), but also provide capabilities to
carry commands from applications to e.g. actuators deployed in devices (Karagiannis
et al., 2015). These protocols of the fourth layer in the TCP/IP model sit on top
of the Internet protocol suite for transport and network (see Section 2.3.2). In the
following, we discuss some communication protocols, which are seen in the literature
as potential candidates for the IoT application layer (Karagiannis et al., 2015; Chen &
Kunz, 2016; Nastase, 2017; Yokotani & Sasaki, 2017). They have various features,
layer stacks and utilize different communication patterns, whose concepts were
already introduced in Section 2.3.1.

2.4.2.1 Hypertext Transfer Protocol (HTTP)/HTTPS

One of the application protocols is the well-established and -known Hypertext Transfer
Protocol (HTTP), which was initially standardized by the IETF and the W3C in 1996
(Berners-Lee et al., 1996), with its latest version HTTP/2 in 2015 (Balshe et al.,
2015). Besides other protocols (e.g. Simple Mail Transfer Protocol (SMTP) or File
Transfer Protocol (FTP)), it has been applied for communicating in the Internet and
is the foundation of data communication in the WWW. It can also be used for IoT
communications.

Application

HTTP

TLS (optional)

TCP

IP

Source: Author’s illustration

Figure 2.17: HTTP protocol stack

48 2. FUNDAMENTALS

HTTP communication presumes an underlying and reliable transport layer protocol.
Therefore, it generally takes place over TCP/IP connections with a default port of
80. However, it can also be implemented on top of any other protocol in the Internet
or on any other networks (Berners-Lee et al., 1996). The typical layer stack for
HTTP in the WWW is shown in Figure 2.17. Using an optional Transport Layer
Security (TLS) layer for encryption, which constitutes as Hypertext Transfer Protocol
Secure (HTTPS), the default port changes to 443.

HTTP implements a request/response protocol for the client-server computing model.
Traditionally, the server provides a resource (e.g. a website), which is identified
and located with a Uniform Resource Locator (URL). The client submits a request
message to the server indicating the requested resource. The server returns a
response message with completion status, information about the request and the
requested content in its message body.

HTTP server

GET /docs/index.html HTTP/1.1

HTTP client

HTTP/1.1 200 OK "<html> ...</html>"

Source: Author’s illustration

Figure 2.18: HTTP request/response interaction scheme

Figure 2.18 shows a HTTP request performed by a client. The depicted code shows
the request line with the used method (GET), the requested resource (/docs/in-
dex.html) and the used version of the protocol. Header fields, which contain more
information such as the host address or the user-agent, are omitted in the figure.
Since the client uses the GET method for the request, a body is not necessary. The
server handles the request and returns the requested resource, in this example a
HTML website. The response status line consists of the used protocol version, a
status code (200 for OK) and a reason phrase (OK). Headers (omitted here) include
e.g. the content type and content length of the response body. The body itself carries
the requested resource, here the requested website (<html>...</html>).

Besides the GET method, HTTP defines also other methods. This includes the
POST method, which encloses an entity in the request body as a subordinate of
the resource, or the HEAD method which is similar to the GET method but only
returns the header of the requested resource. Further methods are: PUT to store the
enclosed entity under the supplied request URL and DELETE to request the server
to delete the resource identified by the URL.

2. FUNDAMENTALS 49

Since HTTP/2, the protocol is extended with a server push mechanism which allows
server to send resources to a client before the client requests them. This is useful
to reduce traffic for unavoidable request, for instance, if a website consists of mul-
tiple files (e.g. style sheets). However, HTTP/2 Server Push is not a notification
mechanism like described in Section 2.3.1.4 and, thus, cannot be used for real-time
messaging.

By using HTTP, a so-called RESTful architecture (Representational State Transfer
(REST)) based on the Web can be implemented. Fielding (2000) developed this
architecture style in his doctoral thesis. The style embodies various principles to
access a resource in a distributed application, which is uniquely identified and linked
to by an URL.

HTTP & IOT

The REST style is highly applicable in the IoT vision to access smart things, as we
discuss later (see Section 2.5.2). However, although HTTP is widely used in the
Internet, for M2M communications in the IoT, it has crucial disadvantages. Yokotani &
Sasaki (2017) state that in IoT, HTTP must transfer large number of tiny packets. But
because of the protocol’s overhead, it forces high consumption of network resources
and large delays. Further, Naik (2017) points out that compared to other IoT protocols
the message size of HTTP is quite large and it requires high power and resource
consumption. Further, with the request/response mechanism, HTTP is not suitable
for real-time messaging and data stream initiation.

2.4.2.2 Constrained Application Protocol (CoAP)

Constrained Application Protocol (CoAP) is a proposed standard by the Internet
Engineering Task Force (IETF), which was published in June 2014. It is a specialized
web transfer protocol for use with constrained nodes and constrained networks. It
is designed for M2M applications and suitable for IoT environments (Shelby et al.,
2014).

Like HTTP, CoAP supports a request/response interaction model for application end-
points. It includes key-concepts of the Web such as URLs and Internet media types,
so that it can be interfaced with HTTP easily. Still, it meets specialized requirements
such as a low overhead and, thus, adaption to constrained environments is facilitated.
The goal of CoAP is to realize a subset of REST communication common with HTTP
but optimized for M2M applications. Unlike HTTP, CoAP is mainly developed for
applications based on UDP as transport layer protocol, but can also be used with
TCP, SMS and so on. Datagram Transport Layer Security (DTLS) may be used as a
security layer (see Figure 2.19).

50 2. FUNDAMENTALS

Application

Requests/Responses }
CoAP

Messages

DTLS (optional)

UDP

IPv6/6LoWPAN

Source: based on Shelby et al. (2014)

Figure 2.19: Abstract protocol stack of CoAP

RESOURCE IDENTIFIER

Since CoAP is mainly developed to interoperate with HTTP through proxies, CoAP
uses "coap" and "coaps" Uniform Resource Identifier (URI) schemes for identifying
resources. These schemes can be compared to HTTP URI schemes. The CoAP
URI scheme looks like the following.

"coap:" "//" host [":" port] path-abempty ["?" query]

Like in HTTP, the host component must be provided as an IP-literal or a registered
name whose address can be found by using a name resolution service (e.g. DNS).
The default port 5683 can be changed by indicating a custom UDP port. A resource
is identified by the path associated with the host and the port. The path may consist
of a sequence of path segments which are separated by a forward slash. Optionally,
the resource can be further parameterized by using arguments in a query section.
The arguments are Key-Value Pairs (KVPs) encoded and separated by an ampersand
character. The "coaps" URI scheme is similar but uses a coaps as scheme name
and has a default port of 5684 (Shelby et al., 2014).

2. FUNDAMENTALS 51

MESSAGE FORMAT

A CoAP message consists of a fixed length binary header (4 bytes), followed by
compact binary token, options and a payload.

0 1 2 3 4 7 8 15 16 31

Ver T TKL Code Message ID

Token (if any)

Options (if any)

Marker (0xFF) Payload (if any)

Source: based on Shelby et al. (2014)

Figure 2.20: CoAP message format

Ver is the version number of the used CoAP protocol.

T specifies the message type, which can be Confirmable (0b00), Non-confirmable
(0b01), Acknowledgement (0b10) and Reset (0b11).

TKL determines the length of the token field in bytes if there are any tokens in the
message.

Code is an 8-bit unsigned integer, which is split into 3-bit class and 5-bit detail. The
class indicates a request (0), a success response (2), a client error response (4) or a
server error response (5).

Message ID is a 16-bit unsigned integer and is used to detect message duplication
and to match messages when they need acknowledgement.

The Token value may be 0 to 8 bytes, as indicated in the TKL field. This value is
used to correlate requests and response. The token is followed by zero or more
Options. Subsequently, the Payload joins, which is prefixed by a payload marker
(0xFF).

MESSAGING MODEL

The CoAP messaging model is divided into two layers: (i) a messaging layer and (ii)
a request/response layer (see Figure 2.19). The messaging layer is responsible for
the exchange between two or more endpoints. It sits on top of the UDP protocol and
must compensate its reliability drawbacks. This includes reliability and coordination
mechanism, congestion control as well as duplication detection. Still, the 8 byte

52 2. FUNDAMENTALS

header of UDP is much more efficient than using TCP. The request/response layer
is similar to a RESTful communication with HTTP. A client may request a resource
on a server with different methods, which is identified by a URL. The header of
the messages carries the REST information such as the method (GET, POST, PUT,
DELETE), the response code and other options (e.g. content-type). Since it is similar
to HTTP, a simple proxy can be implemented which translates between a HTTP
REST and a CoAP REST system.

The messaging model of CoAP is simple. For instance, a client can send a con-
firmable (CON) GET request to a URL such as \temperature to request a resource
(see Figure 2.21). The message also includes a message id (0xbc90) and a token
(0x71).

CoAP server

CON [0xbc90] GET /temperature (Token 0x71)

CoAP client

ACK [0xbc90] 2.05 Content (Token 0x71) "22.5 C"

Source: adapted from Shelby et al. (2014)

Figure 2.21: CoAP GET request with piggybacked response

Since a CON message was send, the client expects an acknowledgement (ACK) or
a reset (RST) message. In the example, the CoAP server responds with an ACK
message which the same message id, a status code (2.05 content) and the payload
as a resource representation. If packet loss occurs - for instance, the server never
receives the CON message - the client might repeat the CON message with the same
message id after a timeout triggers. The example in Figure 2.21 shows a so-called
piggybacked response since the ACK message is expected immediately. However, if
the request requires more time to e.g. calculate the response, the server might send
an empty ACK message without a payload. Later, the server can send a separate
response which is a CON message that matches the token of the original request.
The client confirms with an ACK message (see Figure 2.22).

An interesting option in CoAP is the observe feature which introduces a notification
mechanism (see Section 2.3.1.4) in the REST architecture (see Figure 2.23). The
client requests a resource by its URL with a CON GET request. By setting the
Observe option to 0 (register), the client signals the server its interest in every update
to the resource’s representation. The server acknowledges the request immediately
with a message including the current state of the resource and an observe flag.
Whenever the resource changes its representation, the server notifies the client with

2. FUNDAMENTALS 53

CoAP server

CON [0x7a10] GET /temperature (Token 0x73)

CoAP client

ACK [0x7a10]

CON [0x23bb] 2.05 Content (Token 0x73) "22.5 C"

ACK [0x23bb]

Source: adapted from Shelby et al. (2014)

Figure 2.22: CoAP GET request with separate response

the updated representation, who replies with an ACK message. Important to notice
is, that the token which was originally send in the CON GET request is unchanged for
each consecutive message. This way, client and server can match with the original
subscription.

CoAP has also other features which are described in the specification (Shelby
et al., 2014). This includes e.g. HTTP-proxying, service and resource discovery,
multicasting and several security mechanisms.

COAP & IOT

CoAP is designed for the IoT and for M2M communication. Since it uses UDP for
transport, the protocol has a low overhead with connectionless properties which is in
favor of TCP-based protocols (Hakiri et al., 2015). But like HTTP, it supports mainly
a synchronous request/response mechanism which is less suitable than protocols
with publish/subscribe functionalities (Wang et al., 2017). Further, Karagiannis et al.
(2015) argue that although CoAP is created for the IoT, no security-features are
built-in. Securing messaging with DTLS, like suggested by the standard, is not
adjusted to IoT requirements and, thus, its suitability can be argued.

54 2. FUNDAMENTALS

CoAP server

CON GET /temperature Observe:0 Token 0x3f

CoAP client

ACK 2.05 Observe:27 Token: 0x3f "22.9 C"

CON 2.05 Observe:28 Token: 0x3f "22.8 C"

ACK Token: 0x3f

CON 2.05 Observe:29 Token: 0x3f "23.1 C"

ACK Token: 0x3f

/temperature changes

/temperature changes

Source: adapted from Hartke (2015)

Figure 2.23: Observing a resource in CoAP

2.4.2.3 Message Queuing Telemetry Transport (MQTT)

Message Queuing Telemetry Transport (MQTT) is an open messaging protocol for
M2M communication, which implements the publish/subscribe messaging pattern.
The protocol was designed by IBM in 1999 and initially developed for unreliable net-
works with restricted resources, especially low bandwidth and high-latency (O’Leary &
Piper, 2019). Since 2013 it is standardized by the Organization for the Advancement
of Structured Information Standards (OASIS) and is promoted as an IoT application
protocol. The first standard, which is based on IBM’s specification v3.1 (IBM & Eu-
rotech, 2010), was published in 2014 with the version number 3.1.1 (Banks & Gupta,
2014). In 2016 the same version became the ISO standard ISO/IEC 20922:2016
(ISO/IEC JTC 1, 2016). In March 2019, OASIS finalized the new version MQTT
Version 5.0 (Banks et al., 2019), skipping over version number 4.0.

Specifically, the protocol implements a topic-based publish/subscribe messaging
pattern (see Section 2.3.1.3), whereby clients can register their interests in messages
with a topic filter at a message broker, known as the subscribing process. A client
publishes a message tagged with a topic name by sending it to the broker (a.k.a. the
publishing process). The broker validates the topic with all registered topic filters and
notifies the subscribers with the message accordingly. The sender of the message is
not aware of the possibly multiple receivers. Sender and receivers are decoupled in
space, time and synchronization.

2. FUNDAMENTALS 55

Application

MQTT

TLS (optional)

TCP

IP

(a) MQTT

Application

MQTT-SN

DTLS (optional)

UDP

IP

(b) MQTT-SN
Source: Author’s illustration

Figure 2.24: Layering of MQTT and MQTT-SN

MQTT is based on a TCP/IP communication stack with the standard port 1883 (see
Figure 2.24a). Using TLS, port 8883 is exclusively reserved for MQTT over TLS.
However, with its extension MQTT-SN it can also be implemented for connectionless
protocols (e.g. UDP or ZigBee; see Figure 2.24b) (Hunkeler et al., 2008; Stanford-
Clark & Truong, 2013). The protocols and their features are discussed in more detail
in Section 4.2, since they are used heavily in the implementation part of this thesis.

MQTT & IOT

MQTT realizes the favored publish/subscribe messaging pattern, which is imple-
mented in a very lightweight way and can be used to initiate data streams. Studies
show that it has a better performance in terms of latency than HTTP (Yokotani &
Sasaki, 2017), but performs worse compared to UDP-based protocols such as CoAP
(Chen & Kunz, 2016). With MQTT-SN it may also connect IoT devices deployed in
WSNs and build on top of unreliable protocols.

2.4.2.4 Extensible Messaging and Presence Protocol (XMPP)

The Extensible Messaging and Presence Protocol (XMPP) enables the near real-time
exchange of structured extensible data between any two or more network entities.
For this, it is based on Extensible Markup Language (XML) encoding to setup XML
streams. XMPP, originally named Jabber, was developed by the Jabber community
in 1999 for near real-time Instant Messaging (IM), presence information and contact
list maintenance. In 2004 it was approved as a proposed standard by the IETF
(Saint-Andre, 2004), and in 2011 the XMPP core standard was updated (Saint-Andre,
2011). Further, the XMPP Standards Foundation (XSF) (former Jabber Software

56 2. FUNDAMENTALS

Foundation (JSF)) was founded to develop and publish XMPP extensions using
a standards process. These XMPP Extension Protocols (XEPs) define additional
features for the basic protocol (Saint-Andre & Cridland, 2016). Extensions are, for
instance, Service Discovery (XEP-0030) or Multi-User Chat (XEP-0045).

XMPP uses a decentralized client-server architecture and is designed to support
instant pushing of messages over an established TCP link. Therefore, the stack
constitutes like shown in Figure 2.25. XMPP acts on top of a TCP/IP connection with
a default port of 5222. An encryption layer such as TLS can be used optionally.

XML

XMPP

TLS/SASL (optional)

TCP

IP

Source: based on Saint-Andre (2011)

Figure 2.25: Layering of XMPP

ADDRESSING

Every entity in an XMPP network is addressable with a so-called Jabber Identifier
(JID) and can communicate with every other entity in the network. The JID is a
string consisting of a localpart, domainpart and a resourcepart. The first two parts
are separated by an ’@’, whilst the domainpart and resourcepart are demarcated
with a ’/’. For instance, a typical JID is alice@jabber.org/mobile, where alice is the
user name (localpart), jabber.org is the server name (domainpart) and mobile is the
resource name (resourcepart). The resource is an arbitrary string which is used to
distinguish between multiple connections of the same user from different locations or
multiple clients. So each entity is uniquely identifiable and addressable in an XMPP
network.

COMMUNICATION PRIMITIVES

An XMPP client can connect to a XMPP server and initiate communication with
other clients connected to the same server or network. The server is responsible to
manage connections and sessions for other entities which have the form of an XML

2. FUNDAMENTALS 57

stream to and from authorized clients, servers and other entities. An XML stream
is a container for the exchange of XML elements between any two entities. It starts
with an XML <stream> tag, when a client connects, and ends with a </stream> tag if
the client disconnects. The client (or server) can send any number of XML elements
(so-called XML stanzas) over the stream if the stream is active.

Furthermore, the server has to route the XML stanzas among the entities over the
XML stream. XML stanzas are the basic protocol data units, which are fragments
of XMLs that is sent over a stream. Three different types of stanzas exist in the
XMPP core: <presence/> announces if a contact is on- or offline, <iq/> allows a
request/response interaction between clients or server and clients, and <message/>
is used to send and receive messages.

1 <stream>
2 ...
3 <presence>
4 <show>chat</show>
5 </presence>
6 <iq type="get" id="bv1bs71f">
7 <query xmlns="jabber:iq:roster"/>
8 </iq>
9 ...

10 <message from="alice@jabber.org"
11 to="bob@jabber.org">
12 <body>Hello Bob!</body>
13 </message>
14 ...
15 <presence type="unavailable"/>
16 </stream>

Listing 2.1: Client to server stream

1 <stream>
2 ...
3

4 <iq id="bv1bs71f" type="result">
5 <query xmlns="jabber:iq:roaster">
6 <item jid="bob@jabber.org"/>
7 <item jid="carl@jabber.org"/>
8 </query>
9 </iq>

10 ...
11 <message from="bob@jabber.org"
12 to="alice@jabber.org">
13 <body>Hi Alice, how are you?</body>
14 </message>
15 ...
16 </stream>

Listing 2.2: Server to client stream

58 2. FUNDAMENTALS

The Listings 2.1 & 2.2 show the communication between a client and a server
by using the XML stream and different stanzas. First, the client sends an initial
<presence/>-tag to signalize that it is online. An optional <show/> element specifies
the availability (see Listing 2.1:3-5). Next, the client requests its roster from the
server which contains any number of specific contacts (known JIDs) and is stored on
the server on behalf of the client (see Listing 2.1:6-8). After receiving its contacts
(see Listing 2.2:4-9), the client sends a <message/> with a to attribute assigning the
receiver (here: bob@jabber.org, see Listing 2.1:10-13). Bob answers by sending a
<message/> to the server, which is forwarded to Alice (see Listing 2.2:11-14). Finally,
the client disconnects from the server by sending an "unavailable"-<presence/> and
closes the XML stream (Listing 2.1:15).

The mechanism behind the three different types of stanzas can be conceived by this
example. The <presence/> advertises the availability of other entities in the network.
Other entities know if a specific entity is online and available for communication. But
Alice (entity A) only knows if Bob (entity B) is online, if he authorizes her by a so-
called presence subscription. To see Bob’s presence, Alice must send a subscription
request, which he has to approve. Once approved by Bob, Alice receives regular
notifications about his network availability. Basically, this is a simple, specialized
publish/subscribe method about the presence of entities (Saint-Andre et al., 2009).
IM applications use the presence information in the roster which is the contact list of
an entity containing JIDs and their presence information.

The <iq/> (Info/Query) stanza implements a request/response interaction scheme,
similar to HTTP GET, POST and PUT methods. The payload defines the request to
be processed or the action to be taken by the receiver. A reply from the requested
entity is mandatory. The request includes an id, which is also enclosed in the
response to match with the request, and a type attribute. The type attribute in
an <iq> stanza can take four values: get is similar to HTTP GET and allows the
requesting entity to ask for information, set can be compared to HTTP POST or PUT
and provides some information in the request. result is enclosed in a response to
deliver the result of a get or acknowledge a set request, and error is sent to inform
the requesting entity that the get or set request was not processed.

Finally, the <message/> stanza implements a basic push method. The stanza is
used to transfer information from one entity to another, but since messages are
not acknowledged, it is a kind of "fire-and-forget" mechanism. They contain some
attributes: a type for differentiating the flavor of the message, a to and a from address
attribute as well as optionally an id for tracking purposes. to and from addresses
are the JIDs of the intended recipient respectively of the sender. <message/> stanzas
also contain payload elements, e.g. <body> or <subject> for person-to-person
chat messages. Some basic payloads are defined in the core XMPP specifications,
however, XEPs can also define other payload elements (Saint-Andre et al., 2009).

2. FUNDAMENTALS 59

XMPP EXTENSION PROTOCOLS (XEPS)

XMPP is extensible. With XEPs developed by the XMPP community, the core protocol
and communication primitives became extended over the years. Extensions exist for
e.g. Publish-Subscribe (XEP-0060), Multi-User Chat (MUC) (XEP-0045) or Jingle
for voice calls (XEP-0166) (XMPP Software Foundation, 2018). How XEPs are
integrated by extending the three different types of stanzas is shown with the help of
a MUC example in the following:

The XEP-0045 is the standardized extension for defining Multi-User Chats (MUCs).
The basic idea is to enable people to join a chat room and send messages that are de-
livered to all other participants. A chat room owns a JID such as
teaparty@conference.jabber.org and has a "room roster" of all the participants.
A client joins a chat room by sending a presence to the room, including a preferred
nickname as resource identifier (Listing 2.3)

1 <presence from="alice@jabber.org/mobile"
2 to="teaparty@conference.jabber.org/Alice"/>

Listing 2.3: Client joins a MUC

The room@domain.tld/nick in the to-attribute is the client’s room JID. After the
connection is established, the room sends a join notification from Alice’s room JID to
all other participants. Simultaneously, Alice receives presence from the room JIDs
of all other participants. Depending on the configuration, the room sends some of
the most recent messages exchanged in the room. Now, Alice can send messages
to the room by using the JID of the room (see Listing 2.4). The room forwards the
message to all other participants but sets the from-attribute to Alice’s room JID.

1 <message from="alice@jabber.org/mobile"
2 to="teaparty@conference.jabber.org"
3 type="groupchat">
4 <body>Hello all!</body>
5 </message>

Listing 2.4: Client sends a message to a groupchat

MUCs have further additional features such as private messages, user roles (visitor,
moderator, admin, etc.) and security features. For more information, the reader may
consult the specification (Saint-Andre, 2018).

XMPP & IOT

XMPP was initially designed for chatting and message exchange based on XML
documents. The parsing and creation of XML documents needs additional compu-
tational capabilities and increases power consumption, both may be not sufficiently

60 2. FUNDAMENTALS

available in IoT devices (Karagiannis et al., 2015). Some efforts have been made to
provide lightweight implementation. For instance, Hornsby & Bail (2009) implemented
µXMPP, a lightweight client for the low power operating system Contiki to run on
highly constrained devices. Further with its supported messaging patterns (publish/-
subscribe and request/response), it is also adjustable to the requirements of IoT
applications. Wang et al. (2017) implemented a lightweight XMPP publish/subscribe
scheme for resource-constrained IoT devices based on UDP. They incorporated
features such as sleeping clients and evaluation results on performance were promis-
ing. Furthermore, XMPP has great scalability, addressing, and security capabilities,
which can be useful in IoT applications (Lin et al., 2017).

Besides that, different IoT related XEPs were proposed such as XEP-0323 (IoT
- Sensor Data) (Waher, 2017). The extension provides clients a mechanism, for
instance to request data from IoT devices through an introduced set of XML stanza.
However, along with the other proposed XEPs for IoT, they were retracted.

2.4.2.5 Advanced Message Queuing Protocol (AMQP)

The Advanced Message Queuing Protocol (AMQP) is a lightweight M2M protocol
whose development was originally started by John O’Hara at JPMorgan Chase in
2003 (O’Hara, 2007). In 2006, the AMQP working group was set up by JPMorgan
to begin a partnership in the industry and develop a standardized MOM for most
commercial computing systems, especially in the financial service industry. The
working group’s efforts resulted 2012 in an OASIS standard AMQP version 1.0
(Godfrey et al., 2012), which then became the ISO Standard ISO/IEC 19464:2014
(ISO/IEC JTC 1, 2014). However, AMQP 1.0 is mainly a novel wire-level protocol
with only abstract broker requirements. Much more interesting in the context of IoT
messaging is the previous version AMQP 0-9-1 released in 2008 (Trieloff et al., 2008),
which differ significantly from version 1.0. It is also a wire-level protocol but defines a
broker model for various message exchange mechanisms as well. Therefore, this
thesis focuses on version 0-9-1.

MESSAGE MODEL

AMQP 0-9-1 uses the Advanced Message Queuing model (AMQ) for message
exchange, which consists of a set of components that route and store messages
within a server and a set of rules for wiring these components. In the server, three
main types of components are connected into processing chains to create a desired
functionality. These components are depicted in Figure 2.26.

The server in the AMQ model is called an AMQP broker and has three components:
the exchange (1) receives the messages from publishers and routes them based on

2. FUNDAMENTALS 61

ConsumerPublisher

Exchange

Queue 1

Queue 3
AMQP Broker

Queue 2

Binding

Source: adapted from Al-Fuqaha et al. (2015)

Figure 2.26: Architecture of AMQP

certain criteria. The message routing criteria are provided by bindings (2), which
define the relationships between the exchange and message queues (3). These
store the messages until they can be safely processed by consumers.

With this Exchange-Binding-Queue architecture, a flexible message distribution can
be configured. This flexibility is achieved through different variable settings for the
components: the exchange has a name and implements one of several exchange
types, the binding binds a queue to an exchange by a routing key, which is usually
equivalent to the name of the queue or routing pattern. Now, let a publisher send
a message with a routing key R to an exchange identified by a name and running
on a broker. In the trivial case, the exchange is configured to be of a fanout type,
so that it passes the message to every message queue connected to the exchange
unconditionally. If it is a direct exchange, the routing key of the message R is
compared to the routing key of the binding K and passed to the queue if R = K.
Finally, a topic exchange is similar to the direct type but compares the routing key of
the message P with the routing pattern of the binding R. The message is passed
to the message queue if R matches P . In this case, the routing key must consist
of zero or more words (alphanumeric) delimited by dots. Similarly, the routing key
follows the same rules but can also use * to match a single and # to match zero or
more words. For instance, the routing pattern *.stock.# matches the routing keys
usd.stock or eu.stock.db but not stock.dax. This represents a similar topic-based
publish/subscribe mechanism like in MQTT (see Section 4.2 for details). Other less
important exchange types are also possible. For this, the reader may consult the
specification in Trieloff et al. (2008).

The message queues are created by consumers. For creation, a consumer declares
an exchange by name, a queue name and, if necessary, a routing pattern at the
broker. The broker establishes the binding between exchange and queue. Then, a

62 2. FUNDAMENTALS

message, that is passed to the queue by the exchange, is either delivered directly to
the consumer if he subscribed to the queue (push) or is stored in the queue until the
consumer pulls it on demand. Further, queues can be private to a single consumer
or of a shared type. Shared queues may have many consumers and distributes the
messages between these on a round-robin scheduling. This means, that a message
of a queue is never sent to more than one consumer unless a failure occurs.

ARCHITECTURE

AMQP 0-9-1 is a binary protocol. Its messages are organized into frames with a
header, a payload and a frame end. Its messages require a fixed header of eight
bytes and a variable content header that carries the delivery parameters such as type
of the message and content parameters such as the size of the content. The payload
of a frame can be of arbitrary size. AMQP supports reliable communication focusing
on message-oriented environments. This requires a reliable transport protocol to
exchange messages, thus it is typically used as an application layer protocol on a
TCP/IP protocol stack (see Figure 2.27).

Application

AMQP

TLS (optional)

TCP

IP

Source: Author’s illustration

Figure 2.27: Layer stack of AMQP

AMQP can be used with TLS or SASL, which provide authentication and encryption.
However, the specification does not stipulate any security features or requirements.
Thus, the security depends on the actual implementation.

AMQP & IOT

Through its flexible message-oriented approach, AMQP is an interesting protocol for
the IoT. According to Naik (2017) with its wide range of services related to messaging,
it is the preferred choice for businesses. A publish/subscribe mechanism like in MQTT
can be applied, as well as ordinary message queues, which can be used to implement

2. FUNDAMENTALS 63

worker queues. Compared to MQTT, AMQP offers more aspects related to security
but it is less energy efficient (Luzuriaga et al., 2015). Hence, Luzuriaga et al. (2015)
would prefer AMQP with ideal WLAN but MQTT under constrained environments.
Furthermore, the services of AMQP demand higher bandwidth and latency. Since it
relies on the TCP/IP suite, devices that use AMQP cannot interoperate easily with
devices that do not have the required resources to support TCP/IP (Al-Fuqaha et al.,
2015).

2.5 IOT INFORMATION AND SERVICES

The third building block of IoT architectures is named "IoT Information and Services"
(see Figure 2.2). Based on Latvakoski et al. (2014), the block can be subdivided
into an information and a service level. The information level consists of information
management services and exchange transactions between the different stakehold-
ers of the IoT architecture. Generally, a standardized common information model
facilitates a smooth and interoperable exchange of information and business inter-
action between the stakeholders of a system. Thus, it is favorable to use an agreed
standardized information model in IoT architectures. Information models are used by
the service level, which are also named IoT service platform. They include service
solutions and frameworks. Depending on the use case and implementation, they
may offer generic service elements such as service discovery and delivery, access
control, generic storage and device management as well as environment monitoring
and event notification (Pakkala & Latvakoski, 2007).

IoT service platforms can be implemented using a variety of architecture patterns.
Several solutions in recent years incorporated Service-oriented Architecture (SOA)
technology into IoT service delivery systems to ensure interoperability and to solve
the heterogeneity of services and physical entities (Cheng et al., 2016). The Sensor
Web services of the OGC form such an SOA-based architecture, which is described
in detail in Section 2.5.1. However, researchers argue that traditional SOA standards
and technology are not designed for the IoT but rather for the integration of enterprise-
class heavyweight services (Cheng et al., 2016). That is why, some researchers
argue for IoT service platforms based on Resource-oriented Architectures (ROAs)
(Guinard et al., 2010b; Mayer & Guinard, 2011; Zanella et al., 2014), which adopt
the RESTful style introduced by Fielding (2000). ROA are used in the IoT to support
the idea of the WoT (Traversat et al., 2003). Other researchers favor Event-driven
Architectures (EDAs) for implementing IoT service platforms, which provide on-
demand distribution of sensed information and event-driven service coordination
(Zhang et al., 2014; Cheng et al., 2016; Rieke et al., 2018).

64 2. FUNDAMENTALS

In the following, we will look at IoT service platforms that are implemented using
SOA, ROA and EDA patterns and describe example implementations. Since inter-
connection and interoperability is a crucial requirement for information models and
services in the IoT, we focus on established or promising standards and interfaces
for IoT service platforms. Furthermore, for the sake of suitability in a geospatial IoT,
platforms are chosen, which internalize a geospatial nature.

2.5.1 OGC’S SWE: A SOA FOR THE SENSOR WEB

SOAS AND THE IOT

The SOA approach is the dominating middleware layer designed to support com-
munication and information sharing in the contemporary WWW. Services, which
embodies the key concept of SOAs, are autonomous, loosely coupled and platform
independent entities. They can be described, published, used and combined (Lan
et al., 2015). SOAs follow the "publish, find and bind" paradigm: a service provider
publishes a service description to a service registry, which can be searched by
service requesters to find the service. Finally, the service requester may invoke the
service by using the bind operation (Bukhsh et al., 2015).

Since the SOA style is heavily used in distributed architectures in the Internet,
it also plays an important role in the IoT. Razzaque et al. (2016) argue that a
middleware architecture for the IoT should be service-based to offer high flexibility
and abstract services for the complex underlying hardware for e.g. data management,
reliability, security and so on. They include several advantages, for instance, ensure
interoperability through web service standards such as the Simple Object Access
Protocol (SOAP). But embedding these concepts at device level requires significant
simplification, optimization and adaption of SOA tools and standards (Guinard et al.,
2010a). Furthermore through their messaging pattern (request/response), they only
provide limited real-time capabilities of sharing information (Razzaque et al., 2016).

Several sensing and IoT systems use a SOA-based approach (e.g. Bendel et al.,
2013; Fazio & Puliafito, 2015; Kotsev et al., 2015). The Sensor Web and its associated
services are one example of a SOA for sensing infrastructures. Thus, they are
explained exemplary in the following.

SENSOR WEB

The concept of the Sensor Web describes a collaborative, coherent, consistent and
consolidated sensor data collection, fusion and distribution system. Originally, it was
not a dedicated platform for the IoT but rather was proposed as a meta-platform that
integrates arbitrary sensors and sensor networks operated by institutions such as the
European Environment Information and Observation Network (EIONET) (Simonis,

2. FUNDAMENTALS 65

2008). However, in recent years, Sensor Web infrastructures became associated
with the IoT as a middleware layer between IoT devices and applications (Bröring
et al., 2011; Latvakoski et al., 2014). The Sensor Web aims at providing access to
sensor information and data through standardized web services interfaces (Klopfer &
Simonis, 2009). Thus, it can be viewed as a web overlay for the underlying sensor-
based systems (Latvakoski et al., 2014). Services in the Sensor Web enable access
to sensor and sensor data using web technologies. They provide a facade to the
complexity of the communication in the underlying layers. Botts et al. (2007) provides
a general definition, which is adopted for this thesis (see Definition 2.4).

Definition 2.4 (Sensor Web)
A Sensor Web refers to web accessible sensor networks and archived data
that can be discovered and accessed using standard protocols and Application
Program Interfaces (APIs).

The functionalities within a Sensor Web infrastructure are according to Botts et al.
(2007):

• The discovery of sensor systems, observations, and observation processes
which are met by the immediate needs of applications or users.

• The sensor’s capabilities and quality of measurements must be determined
and retrievable.

• Software can access sensor parameters which allow them to process and
geo-locate observations automatically.

• Real-time or time-series observations and coverages in standard encodings
are retrievable.

• Sensors can be assigned tasks to acquire observations of interest.

• Software may specify certain criteria to subscribe to alerts issued by sensor or
sensor services.

Since it can be implemented as a SOA in the Web, a Sensor Web infrastructure
builds on the WWW and uses a variety of standards recommended by the W3C,
such as XML, XML schema or SOAP for data encodings and interface specifications
(Klopfer & Simonis, 2009). A driving institution of the Sensor Web concept is the
Open Geospatial Consortium (OGC) and, thus not surprisingly, the view of Sensor
Web has been largely shaped by the architecture developed by OGC’s SWE working
group (Latvakoski et al., 2014). As a consequence, we will focus on their work for an
implementation of the Sensor Web in the following.

66 2. FUNDAMENTALS

SENSOR WEB ENABLEMENT (SWE)

The OGC SWE working group started their work in 2003 focusing on standards
to implement the concept of the Sensor Web. The group issued a SOA-based
framework containing of a number of standards, which define formats for sensor data
and metadata as well as sensor service interfaces. It is accordingly called the "SWE
framework". The standards allow the integration of sensor networks in the Geospatial
Web. The SWE architecture has been advanced to a mature state and some of the
SWE standards have also been adopted to official OGC standards, but the efforts
of the working group are still on-going, so that new proposed standards are issued
or adopted standards are reviewed (Jirka et al., 2009). Between 2006 and 2007 the
first framework (SWE 1.0 specifications) have been approved as standards, followed
by the second generation (SWE 2.0) since 2011 (Bröring et al., 2011). Here, only
the standards of SWE 2.0 are described briefly. The reader may consult the given
literature for further information about SWE 1.0 and their differences.

As mentioned in the introduction to this chapter, the IoT Information and Services
block consists of an information and service layer. Accordingly, the SWE framework
is structured into an information model and an interface model, which are discussed
in the following sections.

SWE INFORMATION MODEL

The SWE information model defines data models mainly for the encoding of sen-
sor observation and sensor metadata. In SWE 1.0 the set of standards covers
three specifications: Observations and Measurements (O&M), Sensor Model Lan-
guage (SensorML) and the Transducer Markup Language (TML). The SWE working
grouped reviewed the information model for the second generation resulting in
the advancements of O&M 2.0 and SensorML 2.0. These two form the proposed
SWE Common 2.0, which defines data types shared by multiple specifications (see
Figure 2.28). Further, the Event Pattern Markup Language (EML) encodes event
patterns as processing rules for Complex Event Processing (CEP). O&M 2.0 and
SensorML 2.0 were adopted as OGC standards and described further.

SensorML 2.0 is a standard model and XML schema for describing sensors, sensor
systems and their associated processes for inventory management. According to
Botts et al. (2007) it provides information needed for discovery of sensors, location
of sensor observations, processing of low-level sensor observations and listing of
taskable properties. In version 2.0 some key features were added such as explicit
support for data streaming or its improved derivation and association with GML 3.2
(Botts & Robin, 2014).

O&M 2.0 provides a conceptual schema for observations as well as for features
involved in sampling when making observations. Models for exchanging information,

2. FUNDAMENTALS 67

Observations &
Measurements

 1.0

Sensor
Model

Language 1.0

Observation &
Measurements

 2.0

Description of
Sensor Data

SWE Common 2.0

First Generation SWE:

New Generation SWE:

Eventing and
 Alerting

Event Pattern
Markup

Language

Sensor
Model

Language 2.0

Description of
Sensor Metadata

Transducer
Markup

Language 1.0

Source: adapted from Bröring et al. (2011)

Figure 2.28: SWE interface model

which describe observation acts and their results are specified in the standard (Cox,
2013). In O&M 2.0 the conceptual model and its implementation are separated from
each other. Further, it introduces new spatial profiles and new observation properties
(Bröring et al., 2011). While the model became an ISO standard, the OGC provides
encoding standard for the implementation. In Cox (2011), an XML schema of O&M
2.0 is standardized.

SWE INTERFACE MODEL

The SWE interface model uses the encoding standards given in the information
model to provide services for the Sensor Web. In its first generation, four service
interfaces were defined (Bröring et al., 2011):

• The Sensor Observation Service (SOS) provides access to sensor measure-
ments as well as sensor metadata based on HTTP requests.

• With the Sensor Planning Service (SPS) tasking of sensors and setting their
parameters can be accomplished.

• The Sensor Alert Service (SAS) allows clients to subscribe for alerts based on
certain criteria, for instance if a sensor measurement exceeds a threshold.

• Finally, the Web Notification Service (WNS) is used to provide asynchronous
notification mechanisms between SWE services or other clients. It is not directly
sensor related.

SOS and SPS were adopted as standards by the OGC. In the second generation
of the interface model, both were advanced to version 2.0. The SAS never reached
maturity and was replaced by the Sensor Event Service (SES) draft in the second

68 2. FUNDAMENTALS

generation. Finally, two services for sensor discovery were proposed as discussion
papers but not yet standardized. In the second generation, solely the SOS 2.0 and
the SPS 2.0 are in a solid state and became official OGC standards. Both depend
on the common SWE Service Model 2.0 (see Figure 2.29).

Sensor
Observation
Service 1.0

Sensor
Planning

Service 1.0

Sensor
Alert

Service

Web
Notification

Service

Sensor
Observation
Service 2.0

Sensor
Planning

Service 2.0

Sensor
Event

Service

Sensor
Observable

Registry

Sensor
Instance
Registry

Access to
Sensor Data

Tasking of
Sensors

Eventing and Alerting Discovery

SWE Service Model 2.0

First Generation SWE:

New Generation SWE:

Source: adapted from Bröring et al. (2011)

Figure 2.29: SWE interface model

The SOS allows requesting sensor metadata and sensor measurements by means
of the WWW, namely HTTP. SOS 2.0 provides methods to retrieve service metadata
(GetCapabilities), query sensor descriptions (DescribeSensor) or access observa-
tions (GetObservation) (Bröring et al., 2012). Thereby, it utilizes the SWE information
model 2.0 and its encoding standards to encode requests and response data. The
GetObservation operation of the SOS 2.0 uses particularly the O&M 2.0 model
for the creation of a response document, whilst the DescribeSensor method relies
heavily on the SensorML 2.0 encodings. The SOS 2.0 may be configured with a
transactional extension which contains operations to add new or delete old sensor
descriptions (InsertSensor and DeleteSensor) and to insert new sensor observations
(InsertObservation). Natively, they also make use of the standards defined in the
SWE information model.

The SPS is a web service interface, which allows clients to request user-driven
acquisitions and observations by tasking of sensors (e.g. setting a sampling rate).
Furthermore, it provides information about the capabilities of a sensor as well as
how to task sensors (Botts et al., 2008). Version 2.0 offers some important methods
to steer the tasking of sensors. Besides the GetCapabilities operation to retrieve
service metadata from a server, other important operations are the GetFeasibility
operation to check whether a task is feasible for a sensor, Submit to submit tasks or
the GetStatus method to track the status of submitted task. For retrieving sufficient
information to formulate tasking requests, the DescribeTasking can be used by clients
to request the syntax for describing a task. Further operation can be obtained from
the standard in Simonis & Echterhoff (2011).

2. FUNDAMENTALS 69

2.5.2 SENSORTHINGS API: A RESOURCE-ORIENTED
ARCHITECTURE FOR THE IOT

ROA AND THE IOT

In Resource-oriented Architectures (ROAs) a RESTful style is adopted, which can
also be used to implement the information and service block of IoT architectures.
Some researchers argue that a RESTful architecture is more suitable for IoT applica-
tions. Zanella et al. (2014) state that is has very strong similarity with traditional web
services and, thus, facilitates the adoption and use of IoT by both, end users and
service developers. Furthermore, the resources of particular IoT devices can directly
be mapped to resources in the Web, the basic components of ROAs (Guinard et al.,
2011). Like mentioned, the WoT initiative, which envisions a world where IoT devices
are exposed using WWW technologies, is built upon REST principles: smart things
are accessible using URIs that can be exchanged, referenced and bookmarked (Col-
lina et al., 2012). Devices of the IoT can either serve content directly by deploying
web servers, or the connectivity can be achieved indirectly through a proxy (Guinard
et al., 2011). We already learned about the CoAP protocol, which offers a RESTful
style for resource-constrained devices. For instance, by implementing a CoAP-HTTP
proxy, the connectivity to the Web can be easily established.

OGC SENSORTHINGS API

In 2016, the SWE suite was extended by the OGC SensorThings API, a standard
that is designed to be RESTful and is based on the already established OGC SWE
information model standards including the O&M 2.0 data model. However, the Sen-
sorThings standard focuses on interconnecting IoT devices, data, and applications
over the Web (Liang et al., 2016b). Therefore, it uses a more lightweight code-base
and JavaScript Object Notation (JSON) as data exchange format (Kamilaris & Os-
termann, 2018). Jazayeri et al. (2015) showed that the standard can be used on
resource-constrained devices and is more suitable for the IoT than a SOS-based
architecture due to efficiency. The standard provides two main functionalities whereby
each function is handled and standardized by a separate profile: Sensing Profile
(Part I) and Tasking Profile (Part II).

The Sensing Profile (Part I) has been adopted as an OGC standard in 2016 (Liang
et al., 2016a). It offers managing and retrieval of observations and metadata of
heterogeneous IoT sensor systems in a standardized way. Thus, it is comparable
to the SOS introduced before, but designed for resource-constrained devices. It
adopts the REST principle to represent each resource by a unique URI. This allows
to perform CRUD7 operations by using methods of HTTP. In addition to HTTP,

7Create, Read, Update, Delete

70 2. FUNDAMENTALS

a SensorThings service may support the MQTT protocol to enhance the API with
publish and subscribe capabilities. The entities of the SensorThings API are illustrated
in the UML diagram in Figure 2.30. The model is based on the O&M 2.0 concept.
While observation, observed property and feature of interest exist in both models,
the sensor entity corresponds to the procedure of O&M. Datastream for grouping
observations and the thing entities are further added to the model. Hence, the
SensorThings model is much more aligned to objects in the IoT than the SWE
standards.

Source: Liang et al. (2016b)

Figure 2.30: Sensing entities in the SensorThings API

Part II of the SensorThings API, the Tasking Profile, was adopted recently (Liang
& Khalafbeigi, 2019). The profile introduces interoperable methods for submitting
tasks to control sensors and actuators. Therefore, it is similar to the SPS but again is
specifically designed to work with resource-constrained devices. The profile extends
the thing entity of the model by tasking capabilities and tasks. These can also be
accessed by CRUD operations using HTTP methods.

2. FUNDAMENTALS 71

2.5.3 EVENT-DRIVEN ARCHITECTURES & OGC’S EVENTING WORK

EDA BASICS

In 2003, Gartner coined the terminology Event-driven Architecture (EDA) by describ-
ing a conceptual architecture pattern based on events (Schulte & Natis, 2003). The
pattern defines a software design for implementing applications and systems with
messages (events) that determine the flow between decoupled software components
and services (Maréchaux, 2006). This is fundamentally different to the SOA and ROA
patterns; while these use directed, bidirectional request/response communication to
invoke procedures, EDA utilizes unidirectional messaging to communicate between
multiple independent software systems (Schulte & Natis, 2003). It is extremely loosed
coupled and highly distributed. According to (Maréchaux, 2006), the fundamental
characteristics of EDA are

1. Decoupled interactions: Software systems in EDA are unaware of each other.
The emitter of an event does not know necessarily the receiver.

2. Many-to-many communications: Publish/subscribe messaging is used, where
a specific event might impact many subscribers.

3. Event-based trigger : The flow of control is determined by the event’s receivers.

4. Asynchronous: Event messaging enables asynchronous operations.

In EDA an event is defined as "a notable thing that happens inside or outside your
business. ... [It] may signify a problem or impending problem, an opportunity, a
threshold or a deviation." (Michelson, 2006). Events in EDA describe detectable
conditions inside a computer system. Thus, the detection and processing of events
determines how a system reacts to a specific situation (Morales & Garcia, 2015).
The event header may describe the event occurrence such as an ID, the type, the
name, the timestamp, the occurrence number or the generator. The body consists
in general of a description of what happened. Since it must be understood by all
consumers participating in the system, a business lexicon or ontology should be
used (Michelson, 2006).

EDAs are based on four logical levels:

1. Event generator : A source, e.g. an application, a database or a service, that
generate events.

2. Event channels are the messaging backbone of EDA. It is used to trans-
port events between the generators, event processors and the downstream
subscribers.

72 2. FUNDAMENTALS

3. Event Processing describes the layer which is responsible for evaluating events
against event processing rules and performing actions accordingly. There are
four types of event processing:

(a) Simple event processing involves filtering or threshold detection.

(b) In Event Stream Processing (ESP), a stream of events is analyzed contin-
uously by e.g. pattern matching in real-time.

(c) Distributed Stream Processing (DSP) is related to ESP. These systems
dynamically distribute the work on multiple computing systems which
allows for a highly scalable processing infrastructure.

(d) Complex Stream Processing (CSP) involves evaluating a confluence of
events and, subsequently, take action according to the result. The ob-
served events might be of different types collected over a period of time
and can be correlated causally, temporally or spatially.

4. Downstream event-driven activity are initiated by single events or event correla-
tion. Technically, this can be accomplished by a push notification issued through
the event processor but also pulling events by the subscribers is possible.

EDA AND THE IOT

EDA are widely used in designing IoT systems (e.g. Filipponi et al., 2010; Wan
et al., 2012). However, the EDA approach mostly complement systems based on
SOAs, known as event-driven SOA, advanced SOA or SOA 2.0 (Theorin et al.,
2017). Several event-driven SOA approaches for the IoT, which supports e.g. real-
time, event-driven and concurrent service execution, can be found in the literature
(e.g. Zhang et al., 2014; Lan et al., 2015; Cheng et al., 2016). Van der Zee and
Scholten (2014) propose a combination of SOA-EDA, which can be utilized to realize
real-time spatial analysis of event streams by integrating spatial algorithms in IoT.
Their architecture consists of an event pre-processing for e.g. (geo)filtering or
(geo)transformation and a Geo-enabled CEP engine, which applies predefined geo
event rules. Deployed web services can be used to access the event stream. Rieke
et al. (2018) call on integrating event-based communication in traditional service-
oriented SDIs to integrate IoT devices and their data flows for a Geospatial IoT.

OGC WORK ON EVENTING

Event-driven models and architectures has been conducted also by the OGC (see
timeline in Figure 2.31). Starting with the SAS in the first generation of SWE stan-
dards, the successive SWE generation brought out a draft for the SES. While the
SAS is a push-based counterpart of the SOS based on the XMPP protocol, the SES
is not tightly coupled with a specific transport protocol and provides advanced filtering

2. FUNDAMENTALS 73

Source: Rieke et al. (2018)

Figure 2.31: Seminal OGC work on eventing-related specifications

capabilities. Westerholt & Resch (2015) argue that the SES has a quite complex
specification and the approach goes far beyond the basic purpose of notification.
Both proposals never reached the status of an official standard. Further, the OGC
tried to introduce a more general approach for notification by developing the WNS,
which is a standalone message broker that offers notification capabilities to other
OGC Web Services (OWSs) by a range of possible protocols such as XMPP or
SMS (Simonis & Echterhoff, 2006). However, it is outdated and not under proactive
development (Westerholt & Resch, 2015). Under the working title OGC Event Service
(Echterhoff & Everding, 2011), the OGC incorporated their experience from SES
and their Event Architecture (Echterhoff, 2010) by applying OASIS Web Services
Notification (WS-N) and a SOAP binding. Finally, the efforts resulted in the OGC
Publish/Subscribe standard in 2016, which is presented briefly in the following.

OGC PUBLISH/SUBSCRIBE

The OGC Publish/Subscribe Interface Standard (OGC PubSub in short), officially
approved in 2016, was developed by the PubSub Working Group, which was initiated
in 2010. It describes a mechanism to support publish/subscribe requirements across
OGC data types and service interface. Thus, it is destined for the Sensor Web
standards such as the SOS, but also for other OGC services like the Web Feature
Service (WFS) (Bigagli & Rieke, 2017). According to Rieke et al. (2018), the standard
is a fundamental enabler towards event-driven SDIs. It extends the request/response
mechanism of most mature OWSs by a publish/subscribe mechanism and, thus,

74 2. FUNDAMENTALS

enables clients to subscribe to information already provided by any these services.
Furthermore, OGC PubSub may use specific filtering capabilities.

Currently, the OGC PubSub consists of two standard documents (see Figure 2.31):
(1) the core document, which is independent of the underlying technology and covers
the basic mandatory functionalities and optional extensions abstractly (Braeckel
et al., 2016), and (2) a SOAP binding document defining the implementation in
SOAP services, which relies on WS-N set of standards (Braeckel & Bigagli, 2016).
Furthermore, a binding for PubSub functionality in REST/JSON services is in draft
status (Rieke et al., 2018).

The core document of OGC PubSub adopts the terminology and concepts of the
publish/subscribe pattern like discussed in Section 2.3.1.3. Further, it introduces
two additional roles: a receiver and a sender, which often coincides with subscriber
respectively publisher, but can also be decoupled from another. A subscriber gen-
erates a subscription on behalf of the receiver by using the subscribe() operation
on a publisher. The subscription may include filter expressions, e.g. based on OGC
Filter Encoding 2.0 (Vretanos, 2014), to apply on the message content, metadata
or other aspects. The publisher responses with a SubscribeResponse message for
acknowledging or declining the subscription. In case of a successful subscription,
the receiver is notified (via the Notify operation) by the sender asynchronously, if
the new message matches the subscription. Subscriber may terminate subscrip-
tions with the Unsubscribe operation send to the publisher, who answers with an
UnsubscribeResponse. The core standard can be extended by further optional
functionalities. The functionalities a publisher provides can be requested by clients
using the GetCapabiltities operation. It delivers a capabilities document consisting
of metadata such as supported filter functionalities, requirements for use or content
information. Furthermore, a subscriber can retrieve information on one or more
subscriptions sending a GetSubscription request to the publisher.

2.6 IOT DATA PROCESSING AND VISUALIZATION

Finally, IoT data analysis and visualization is the fourth building block depicted in
Figure 2.2. It is also called "the application level" (Latvakoski et al., 2014), since
provided services and the collected data are used to manage the IoT infrastructure or
to analyze and visualize in applications. Since the emerging IoT produces volumes
of data in a short time, it has similar challenges and opportunities in analyzing and
visualizing as the big data industry (Marjani et al., 2017). This includes the three
characteristic "Vs": growth in volume, velocity and variety of data (Rios & Diguez,
2014). Of course, solutions to meet these problems are wide-ranging. Hence, we
only will give a brief and surficial overview about data processing and visualization.
For more information, the reader may consult the common literature on big data.

2. FUNDAMENTALS 75

2.6.1 IOT DATA PROCESSING

The data collected by sensors in the IoT is massive in volume and velocity: millions
of IoT devices produce new observations with a high frequency. Thus, the need to
adopt big data analytics in IoT applications is compelling (Marjani et al., 2017). This
can be subdivided into batch processing for analyzing massive quantities of stored
data and stream processing to analyze data streams. Both can be used to process
the data produced in IoT, but stream processing also handles newly arriving data
tuples in data streams.

BATCH PROCESSING

Traditionally, batch processing describes a computer program which read data from a
file, process it and writes the result back to another file. For IoT data this means that a
process takes data as an input, e.g. a set of sensor observations, applies algorithms
to the set and delivers an analysis. Depending on the size of the input data, this
might become infeasible in terms of limited memory or computation time for a single
computing system. Thus, big data analytics offers tools and software to distribute
batch processing jobs to multiple machines balancing the workload. For instance,
Apache Hadoop8 provides an open-source implementation of the MapReduce model
that is a popular parallel processing model to handle data processing in distributed
systems (Yue & Jiang, 2014). It especially allows for horizontal scaling. These
systems can be used to process sensor data on a large scale like shown by e.g. Rios
& Diguez (2014). However, it still performs a batch process whose input is static and,
once invoked, cannot be updated.

STREAM PROCESSING

The growing number of IoT devices result in an exponentially increasing number
of (spatiotemporal) events and data streams. Processing these data streams in a
real-time manner and finally supporting fast decision-making processes drives the
development of suitable tools and algorithms for stream processing (Rieke et al.,
2018). Definition 2.3 introduced data streams as an unbound sequence of tuples. In
particular, these can also be seen as a sequence of events. Incorporating real-time
analysis on events, we already introduced different types of event processing in EDA
(see Section 2.5.3). While simple event processing is applied to single events in a
stream, ESP (and its distributed variant DSP) as well as CEP can be used to analyze
(multiple) event streams.

CEP solutions process concurrent events and derive new events based on their
combination. Fusing and synthesizing events from multiple source and data streams

8https://hadoop.apache.org/

76 2. FUNDAMENTALS

is the complex part of these systems. The joint events are then checked against
specified query patterns and analyzing rules. CEP systems such as Esper9 are
traditionally centralized architectures and do not provide any scalability.

Since key challenges for streaming analysis are (1) one-pass processing, (2) limited
amounts of memory and (3) limited time to process (Bifet & Kirkby, 2009), ESP
systems to analyze (spatiotemporal) data streams in real-time are limited if the
number of IoT devices and streams grow. The distributed variant, DSP, can be
then used to scale horizontally to balance workload on multiple computing systems.
Several DSP frameworks exist such as Apache Storm10, Apache Flink11 or Apache
Spark Streaming12. They support various features and have different performances
on data streams (Lopez et al., 2016). Whole architectures such as the Lambda (Marz
& Warren, 2015) or the Kappa architecture (Kreps, 2014) are built around these
technologies to tackle the mentioned challenges.

2.6.2 IOT DATA VISUALIZATION

IoT requires sophisticated visualization techniques because of the large size and
high dimensions of the data. Marjani et al. (2017) argues that big data analytics and
visualization should work seamlessly to obtain the best results for IoT applications.
The design of presenting data as well as the response time are important factors
in IoT data visualization. IoT devices provide the raw data, but raw data remain
useless for a user. Only accurate visualization interfaces allow humans to perceive
and interpret the data (Logre et al., 2014). Depending on the data and use case,
requirements change for visualization and for providing a suitable user experience:
time series of historical sensor data requires different views and functionalities for
exploring than real-time data updating frequently.

Historical sensor data, obtained by services such as the SOS of the SWE standard
suite (see Section 2.5.1), can be visualized, for instance in form of graphs, in web
portals. This has been done in several research projects (Cannata et al., 2014;
Vitolo et al., 2015; Herle et al., 2018). For instance, in the AirSensEUR Platform
the 52° North Helgoland client13 is utilized to access the stored sensor data (Rieke
et al., 2018). It is a lightweight web application which can access the SOS and
provide diagram views of multiple time series, temporal zooming, panning and so on.
Additionally, the project provides a smartphone app, which enables mobile users to
retrieve and visualize sensor data.

9http://www.espertech.com/esper/
10http://storm.apache.org/
11https://flink.apache.org/
12https://spark.apache.org/streaming/
13https://github.com/52North/helgoland

2. FUNDAMENTALS 77

Since managing and analyzing IoT data effectively is challenging at scale and at
near real-time, real-time analytics and visualization require different features (Winters
et al., 2016). Nevertheless, the information should be perceivable in a fast way, that
is why dashboards are often applied to visualize real-time IoT data. Dashboards
are visual displays of the most important information to achieve objectives. The
information is arranged on a single screen to make the information perceivable at a
glance (Few, 2006). For instance, they are extensively used in smart city applications
(e.g. Kitchin & McArdle, 2017; Zdraveski et al., 2017; Matheus et al., 2018).

78 2. FUNDAMENTALS

CHAPTER 3

GEOSPATIAL
INTERNET-OF-THINGS

Devices in the IoT observe occurrences as well as things or drive processes in the
physical world. In doing so, they occupy also a certain location in space, which is
fixed or varies over the course of time. Thus, their emitted data can be annotated
geospatially. An IoT, which measures, sends and processes geospatial data can
be considered as a Geospatial IoT, since the main part of the data and control flow
involves geospatial data, often in real-time.

In this chapter, the characteristics of a Geospatial IoT are discussed to derive an
appropriate architecture. We introduce the spatial nature of things and events
and their integration in IoT systems first. Accordingly, the temporal and spatial
components of events are investigated further. Finally, we derive a model for an
architecture for a Geospatial IoT based on geospatially annotated events and analyze
the requirements for a communication mechanism and protocol, which can be used
to implement the proposed architecture.

3.1 CHARACTERISTICS OF A GEOSPATIAL IOT

3.1.1 SPATIAL NATURE AND MODELING OF THINGS

We already discussed in Chapter 2 that essentially every object of the physical world
can be considered to be part of the IoT. These can be already electrified by nature or
may be analogous but upgraded to smart objects by embedded technology. However,
a thing in the physical world also always has naturally spatial properties. Besides
location ("where"), these are its shape ("what form"), its size ("how big") and its
orientation ("facing in which direction") (Huisman & de By, 2009). Further, van der
Zee & Scholten (2014) consider the sphere of influence or range of an object as
the fifth spatial property of a physical thing. Each of these spatial properties may
undergo changes over time. For example, a car changes its location and orientation
as well as its influence (e.g. noise of the engine) while driving along a road. Thereby,
its form and size stay probably unchanged. Other spatial things such as cyclone
might undergo changes in each spatial property while moving. Here, the location,
the shape and size, the orientation and the influencing area are dynamic attributes
which are functions of time (Venkateswara Rao et al., 2012).

80 3. GEOSPATIAL INTERNET-OF-THINGS

The question that arises is how these spatial properties of things can be modeled in
a Geospatial IoT within a digital representation? Do we have to consider all spatial
properties, so do we need an identical digital twin of the real-world object? Or is a
digital representation which include the location and e.g. orientation of the object
sufficient? This obviously depends on the desired Geospatial IoT application and
use case. If we consider a smart parking guidance system in a smart city application,
it is probably sufficient to know the current location of the car and its destination. But
this only works, if a specific assumption of the car’s size holds. Van der Zee and
Scholten (2014) argues that in most current cases the location is only needed, but
specific use cases also demand for size, shape, orientation or influence sphere of
the spatial object.

The geospatial location is probably the most important characteristic of measure-
ments by Internet-enabled things. For one thing, the exact location while measuring
the physical world is highly relevant for understanding local environmental condi-
tions. But also powerful, context-aware location-based services and Geospatial IoT
applications can only be developed and operated by knowing the accurate location
of humans, animals or objects (Kamilaris & Ostermann, 2018). In recent years,
evolutions in various outdoor and indoor positioning technologies and techniques
have facilitated the location sensing process. According to Zafari et al. (2017) seam-
less and ubiquitous indoor/outdoor positioning and/or navigation of both, static and
mobile devices, will be required by many IoT applications. While outdoor positioning
techniques such as GNSS (e.g. Global Positioning System (GPS) or Galileo) or cell
identification in cellular networks are well-established and cost-efficient, these tech-
nologies are less suitable for indoor environments since they cannot penetrate well
indoors. Other signals have to be utilized for indoor localization purposes (He & Chan,
2016). However, techniques for indoor positioning such as radio-based positioning
(based on WLAN, BLE or Ultra Wide Band (UWB)) are still in a developing phase
(Goodchild, 2010). A detailed technological view on different indoor and outdoor
positioning technologies and their (dis-)advantages can be found e.g. in Bensky
(2016) or Brand et al. (2017). Beside the applicable environment, the accuracy as
well as the operation scale of the different technology is interesting for Geospatial IoT
applications. Figure 3.1 orders several indoor and outdoor positioning technologies
according to their accuracy and operation scale levels.

Beside the geographic location, the orientation of (moving) objects can be useful
in applications. This holds, for instance, for vehicles in smart traffic applications
or for surveillance cameras. The orientation can be measured by sensors such as
gyroscope or accelerometer, which refers to direct determination of orientation. Or it
can be determined indirectly by e.g. 3D object recognition technologies (van der Zee
& Scholten, 2014).

3. GEOSPATIAL INTERNET-OF-THINGS 81

Outdoor Indoor

0.01 m

0.1 m

1 m

10 m

100 m

1000 m

rural urban building room objectsemi-rural

Regional

Global

Local

Confined
indoor

Cellular network positioning

GNSS

(e.g. GPS, Galileo,
GLONASS, AGPS) UWB

TV WLAN

Active RFID

Passive
RFID

Ultra-
sonic,
VLC

BLE

A
cc

u
ra

cy

Source: updated version from Beinat et al. (2007)

Figure 3.1: Positioning technologies: accuracy and operation scales

Positioning and orientation play especially an important role in IoT applications
dealing with moving objects. Moving objects vary their position in the course of time
such as humans, animals or vehicles. Thus, knowing the exact location at any time
can be mandatory. Moving objects undergo location changes meaning that within a
certain period of time, they travel a so-called spatial trajectory, which is a projection of
a moving point into the plane yielding a polyline. A spatial trajectory can be defined
as in Definition 3.1.

Definition 3.1 (Spatial Trajectory)
A spatial trajectory is a trace generated by a moving object in geographical
spaces, usually represented by a series of chronological ordered points p1 →
p2 → ... → pn, where each point consists of a geospatial coordinate and a
timestamp, such that p = (x, y, t) (Zheng, 2015). If the height is included, each
point becomes a 4-tuple p = (x, y, h, t).

Güting & Schneider (2005) distinguish moving objects further into points and regions:
in most cases the position in space is the only relevant parameter, which characterizes
the objects as moving points. However, if the moving object has also an extent, which
is essential for some applications (e.g. a cyclone or an epidemic disease), they can
be characterized as moving regions.

82 3. GEOSPATIAL INTERNET-OF-THINGS

Summarizing, spatial modeling of things may include five spatial properties, namely
the location, the shape and size, the orientation as well as sphere of influence or
range. As we have seen, the object can be modeled by different spatial data types
in 2D such as point, line (e.g. trajectory) or polygon (e.g. extent) depending on the
envisaged use case. In Section 3.4, we discuss these spatial data types further. Of
course, it might be necessary to extend the modeling by 3D rigid or even non-rigid
bodies.

3.1.2 SPATIAL INTEGRATION IN IOT SYSTEMS

IoT systems are a manifestation of the CPS idea like introduced in Section 2.1.
These systems consist of devices equipped with sensors and actuators as well as
computational capabilities on the one hand, but, on the other hand, embody the
cyber-physical model, which is driven by a feedback loop oriented on the OODA loop
concept. This feedback model can also be applied to Geospatial IoT application like
already shown in different research projects (e.g. Terhorst et al., 2008; Yavari et al.,
2016; Curry et al., 2019).

For van der Zee & Scholten (2013), the integration of spatial data, concepts and
technologies in every phase of the OODA loop is increasing efficiency in Geospatial
IoT applications. In their opinion, smart cities benefit from systems implemented in
accordance with the feedback loop. Their adjusted OODA loop for smart cities is
illustrated in Figure 3.2.

Orient & Decide
(spatial analysis)

Observe
(spatial sensing)

Predicting
(spatial modeling)

Act(uate) & Plan
(spatial acting)

current events

current events

future events

meaningful events

Source: adapted from van der Zee & Scholten (2013)

Figure 3.2: Continuous loop of sensing, analyzing, predicting, and
act(uat)ing in a smart city

According to the ISO/TC 268 (2018), the term Smart City describes a city, which
"dramatically increases the pace at which it improves its sustainability and resilience".
Hence, it is an umbrella term for different intelligent developments within a city and its
community. One aspect is the use of sensors, actuators and communication networks
to monitor and control city systems and processes, for instance, infrastructural
facilities. It enables applications in a city such as smart mobility, smart environment,
smart energy or smart citizen, which highly integrate spatial data. Thus, the feedback

3. GEOSPATIAL INTERNET-OF-THINGS 83

loop provided by Figure 3.2 is a data and control flow model for these applications.

In such a feedback system, sensors or sensing ranges are selected and activated
based on their location. They observe their environment, which refers to spatial
sensing, and emit current spatial events. These are the basic input parameters for
spatial modeling and spatial analysis in the orientation phase. Different algorithms
are applied such as simple filtering and functions on single events or CEP methods
to analyze relationships between multiple events. Based on the analysis of spatial
observations and predictions, (spatial) decision can be made in real-time. Meaning-
ful events are generated, which select and activate appropriate actuators, so that
actuating ranges spatially (spatial acting). Processes in the physical world are finally
invoked and driven. Subsequently, their influences can be observed by sensors
starting the feedback loop all over again.

The control model based on the feedback loop represents a cognitive-aware ap-
proach to the IoT incorporating response-mechanisms to observations, analyses and
decisions. Although proposed for smart cities, it can be obviously applied to other
Geospatial IoT applications as well. The driver of this loop are IoT devices and their
emitted spatiotemporal events e.g. measurements of a real-world process or a state.
The control depends on the flow of events like Figure 3.2 suggests. Thus, we need
to define spatiotemporal events in this context. Since the proposed model starts by
observing events in the physical world, we start investigating the concept of spa-
tiotemporal events in the real-world in the following. Then, we introduce the temporal
and the spatial component (Sections 3.3 & 3.4), before defining an architecture for a
Geospatial IoT based on spatiotemporal events in Section 3.5.

3.2 MODELING REAL-WORLD EVENTS

In a Geospatial IoT, real-world events are observed by sensors or are driven by
actuators. Intrinsically, they implicate a temporal, but sometimes also a spatial
component. In a Geospatial IoT both components are relevant. Therefore, we will call
them in the following spatiotemporal events. An architecture based on spatiotemporal
events must define a specific data type. However, before doing so, we need to clarify
the character of the events we observe. First, we conduct a brief literature review, how
the term "spatiotemporal event" is defined in other IoT applications and especially in
the field of GIS software. Subsequently, we approach the notion of events and its
related concepts and finally define geospatial processes, events and states from an
ontological point of view (see Section 3.2.3).

84 3. GEOSPATIAL INTERNET-OF-THINGS

3.2.1 SPATIOTEMPORAL EVENTS IN IOT APPLICATIONS

How can spatiotemporal events be defined? In the literature, spatiotemporal events
in IoT applications are not consistently defined and often related to the specific
use case or application. In the following, different views on spatiotemporal events
are described. They range from modeling real-world occurrences to definitions of
spatiotemporal events in system architectures and databases.

For Hornsby & Cole (2007) a spatiotemporal event in a vessel tracking setting is a
4-tuple:

v
ide

zone
occurT ime (3.1)

It has an id, which is the identifier of the associated object, a zone, which is the spatial
region where the event happens and an occurTime, which is a timestamp reflecting
the event’s occurrence time. They also added a term v for capturing important
semantics about the nature of the event in attribute name:value pairs.

Contrarily, Jin & Chen (2010) adopt an interval-based method to denote the duration
of an event occurrence, with a starting and ending time. Further, they use spatial
data types such as point, line and region to represent spatial objects.

Morales & Garcia (2015) define a so-called g-event for the implementation of
GeoSmart City architectures. A g-event is an occurrence of a "change of state
associated to a phenomenon of interest, and which is related to a geographic location
and a specific time." They use this definition for so-called low level g-events while
high level g-events also include the characteristics of recurrence and causality.

From a stream processing point of view in an EDA, Liebig & Morik (2013) argue
that three type of spatiotemporal data streams exist whereby an event is a central
concept:

1. A spatial time series consists of tuples (attribute, object, time, location).

2. An eventi is triggered from a spatial time series under certain conditions and
contains the tuples verifying these conditions (eventi, objectn, timen, locationn).

3. A trajectory is a partial time series for a particular objecti. A trajectory is a
series of tuples (objecti, timen, locationn).

Güting & Schneider (2005) characterize application data for spatiotemporal databases.
They distinguish between ten different categories of spatiotemporal events and give
example applications:

3. GEOSPATIAL INTERNET-OF-THINGS 85

1. Events in space and time - (point, instant): plane crash, volcano eruptions.

2. Locations valid for a certain period of time – (point, period): construction sites,
coal mines.

3. Set of location events – sequence of (point, instant): collections of (1), volcano
eruptions of the last year.

4. Stepwise constant locations – sequence of (point, period): the capital of a
country, the headquarter of a company.

5. Moving entities – moving point: people, planes, cars

6. Region events in space and time – (region, instant): forest fire

7. Regions valid for some period of time – (region, period): closed area for a
certain time after a traffic accident

8. Set of region events – sequence of (region, instant): Olympic games viewed
collectively

9. Stepwise constant regions – sequence of (region, period): countries, agricul-
tural land use

10. Moving entities with extent – moving region: growth of forests, people in history

In a more generic approach, Tan et al. (2009) tries to define a spatiotemporal event
for CPSs. According to them a spatiotemporal event is an occurrence of interest,
which describes the state of one or more objects either in the cyber-world or the
physical world according to attributes, time and location. This is specifically denoted
as:

Eid {toEid, l
o
Eid, VEid} (3.2)

where E is the event type identifier, id is the event ID, toEid is the event occurrence
time, loEid is the event occurrence location and VEid is a set of event occurrence
attributes. The occurrence time can be either of punctual type or interval type, while
the occurrence location may be a point or a field. In their model, they classify events
into different classes. While a physical event models the occurrence of the end-user’s
interest in the physical world, a sensor event is the actual digital representation of a
physical observation. Moreover, cyber-physical events are generated from sensor
events based on cyber-physical event conditions.

86 3. GEOSPATIAL INTERNET-OF-THINGS

3.2.2 SPATIOTEMPORAL MODELING IN GIS

Also from a Geographic Information Science (GIScience) point of view, some efforts
have been made to introduce various concepts of time in the traditional model of
spatial data. From a modeling perspective, Worboys (2005) and Peuquet (2005)
investigated the evolution of spatiotemporal modeling in GIS. They identified three
stages of evolution phases from snapshot to event-based modeling.

However, Worboys (2005) also introduces a stage zero, which defines a static
GIS with only a single state of knowledge, a single moment about the application
domain. Basically, traditional GIS technology can handle this stage only. Stage zero
technology allows to represent past or future but only in a single moment. So, no
comparisons between the states of affairs at different times are possible. Therefore,
this stage actually does not include spatiotemporal modeling.

3.2.2.1 Stage One: The Snapshot Model

Stage one introduces temporal snapshots which represent a specific state in a
domain at a single moment in time. A temporal sequence describes a collection
of snapshots of spatial configurations of objects, mostly of the same spatial region,
indexed by a temporal variable. In Figure 3.3 three temporal snapshot of the Soers
area in Aachen are depicted. The temporal sequence shows topographic maps
(Digitale Topographische Karte 1:10000, DTK10) from the years 2011, 2014 and
2017. Over the time, different changes can be observed, like the deconstruction of
the old tivoli stadium and the following erection of the residential area in the same
place.

The snapshot model is by far the most common method for spatiotemporal modeling
of the world in databases. Usually the model employs a grid data model like also
used in Figure 3.3, however, also vector models may be utilized (Peuquet, 1999).
Additionally, the layers include information about a single thematic domain at selective
timestamps, whose temporal distances do not have to be necessarily uniform. It is
also possible to represent past or future states of objects but only of single instants
in time. According to Worboys (2005), it depends on the nature of the geographic
phenomena under consideration how the model is structured. If a continuous event
such as the movement of a glacier should be modeled, the model and its time domain
should allow for interpolation between the snapshots. Otherwise, for discrete events -
for instance a change in administrative boundaries - the temporal domain of the model
should reflect this discrete nature. Peuquet (1999) state that with this straightforward
approach, "the state of any location or entity at a given time can be easily retrieved."
But, she also describes three drawbacks, which are inherent for the snapshot model:

3. GEOSPATIAL INTERNET-OF-THINGS 87

(a) DTK10 2011 (b) DTK10 2014 (c) DTK10 2017
Source: Author’s illustration

Figure 3.3: History of the Soers area in Aachen.

1. Each snapshot represents a complete map of the entire region, which increases
the data volume enormously when the number of snapshots increases. But in
most cases the spatial changes in two adjacent snapshots are marginal so that
the amount of redundant data also increases.

2. Detecting changes of spatial entities in two consecutive snapshots is a time
consuming and computing expensive process, since the changes are stored
implicitly and can only be retrieved by cell-by-cell comparisons. Furthermore, it
may happen that short-lived changes at some location are not represented at
all by two adjacent snapshots.

3. The timestamp of a change to a specific spatial entity cannot be determined
exactly. From the snapshots in the example of the Soers area (see Figure 3.3),
you can only tell that the demolition of the old tivoli stadium must have happened
between 2011 and 2014, but the exact date cannot be retrieved.

Meeting these drawbacks, Langran (1990) and Peuquet & Qian (1996) modified the
grid model in a way, that each pixel in the grid owns a list of variable length, which
stores each change at that specific location with a new entry. This way, the event
history for each cell location is maintained by an associated list in temporal order.

88 3. GEOSPATIAL INTERNET-OF-THINGS

3.2.2.2 Stage Two: The Object Model

Stage two represents the change of objects and their spatial configurations. In
this stage the focus is shifted from the temporal sequence of objects to changes of
objects, thus, Worboys (2005) terms this the object-oriented view. For instance, in
Figure 3.3 the old tivoli stadium is demolished between the temporal snapshots of
2011 and 2014, but this information is solely implicitly shown in the maps. The actual
event of the deconstruction cannot be represented with snapshots like in stage one.
Thus, Hornsby & Egenhofer (2000) introduced a change-based model with the two
primitives identity states of objects and transitions. An object represents a real-world
phenomenon in an information system, either a physical entity, such as a building or
lake, or a conceptional object such as states or borders. The object identity is a key
concept since it provides information about the existence or non-existence as well as
the capability of tracking changes or differences of a spatial object. Identity states
associated with objects allow assigning a possibly changing state to objects. Possible
states of objects are, for instance, existing or non-existing. Finally, the transition
primitive models the progression between object states. Some possible transitions
are depicted in Figure 3.4.

reappearance

disappearance

creation

continuation

time

transmission

transformation

death

cloning

Source: adapted from Worboys (2005)

Figure 3.4: Object-change history

Creation, disappearance, reappearance, transformation and death can be applied
to a single object, while cloning is an operation performed by an object to replicate
itself and the transmission operation is performed by one object on another. Besides
change primitives such as creation or destruction, movement occurs when a physical
object changes its position. This can be either continuous like a moving vehicle

3. GEOSPATIAL INTERNET-OF-THINGS 89

along the highway or discontinuous like a relocation of a boundary. Polous (2016)
states that these primitives are in fact events which happen to objects. However, for
explaining complex changes, an event model is essential, which is the third stage of
spatiotemporal modeling.

3.2.2.3 Stage Three: The Event Model

Stage three is a full treatment of change in terms of events, actions (or activities)
and processes. These terms describe slightly different meanings of occurrents in
the real world but also throughout the literature: For Claramunt & Theriault (1995)
events are things that happen, according to Peuquet (1994) an event denotes some
change in some location(s) to some object(s), while Peuquet & Duan (1995) define
an event as the representation of the spatiotemporal manifestation of some process.
Further, Worboys (2005) sees an action as an event which is initiated and sometimes
terminated by humans or non-human agents. He gives further the example of
photosynthesis as a process but the typing of a sentence by an author as an event.
However, all of these occurrents represent happenings in the real world. Complex
occurrents are modeled by the ways how objects are participating in them and how
the involved occurrents are related to each other. So far, many researchers proposed
a range of event-based models in contrast to object-based models (e.g. Claramunt
& Theriault, 1995; Peuquet & Duan, 1995; Worboys & Hornsy, 2004; Worboys,
2005). In an event-based model the sequence of events is essential, thus, the
temporal component dominates the spatial component (Beard, 2006). While object-
based models (stage two) keep track of the changes of properties and attributes
belonging to geographic objects, event-based models (stage three) focus on the
analysis of the changed object and record particular attributes such as start time,
period or the method of accomplishment. Therefore, Galton (2004) distinguishes
between histories, which are functions from a temporal domain to attribute values or
properties of objects, and chronicles, that treat dynamic phenomena as collections
of occurrents. Grenon & Smith (2004) make the same differentiation; for temporal
sequences of object configuration, they propose the SNAP ontology while for the
event/action/process view they formulate the SPAN ontology. SNAP is the ontology
of what exists (at a moment in time - a SNAPshot), whilst SPAN describes the
ontology of what happens (SPANning a period of time). More on these definitions
and distinctions are described in Section 3.2.3, where we develop a definition of
events and processes in a Geospatial IoT.

However, storing data in an event-view fashion can be useful for understanding pro-
cesses since event-based approaches allow the representation of dynamic behavior,
hypothesis generation, scientific investigation of complex relationships, an ability to
investigate causal linkages and associate entities with influences and underlying

90 3. GEOSPATIAL INTERNET-OF-THINGS

processes. There have been early calls for keeping track of events and processes.
However, according to Beard (2006) the realization is difficult because it owes much
to new technologies. But she argues that technology improvements in e.g. environ-
mental monitoring and initiated fine temporal resolved sensor data streams support
the analysis of change and provide a picture of how processes operate.

3.2.3 GEOSPATIAL PROCESSES, EVENTS AND STATES

Before defining events and processes in a Geospatial IoT, both terms has to be
investigated further. Throughout the literature events and processes are not homoge-
neously defined. Its characterization depends mainly on the discipline background but
also the application domain. We already introduced events in EDA (see Section 2.5.3),
how spatiotemporal data is modeled in GIS (Section 3.2.2) and, exemplarily, how
other applications model events (Section 3.2.1). Since the IoT connects physical
object and processes to the Internet, we focus on the events and processes, which
happen in the real-world first. Therefore, e.g. an event definition such as in EDA is
not sufficient.

Omitting the spatial component at first, event and process models store temporal
information in terms of events or processes intrinsically. Like already stated, both
notions share common attributes and an explicit distinction is hard to accomplish.
Galton (2015) argues that both terms are not defined homogeneously in the literature
and may imply sometimes the same thing:

’One person’s process is another’s event, and vice versa’ (Worboys, 2005)

A review of the relevant literature reveals various definitions and relations between
both concepts, for instance:

• Mourelatos (1978) describes situations as the overall concept, which can be
divided into states and occurrences. The latter one can be subdivided further
into processes and events.

• Pustejovsky (1991), on the other hand, regards an event as a base type with
its manifestations state, process and transition.

• For Allen (1984), state, process and event have the same base.

• Campelo & Bennett (2013) distinguish events from processes by means of
the temporal dimension. Whilst events are entities whose properties are not
subject to change over time, processes are entities that are subject to change
over time such as the processes accelerating or slowing down.

3. GEOSPATIAL INTERNET-OF-THINGS 91

• Sowa (2000) defines continuous processes and discrete processes. Continuous
processes are subdivided into initiation, continuation and cessation, while
discrete processes are states or events

That is why Galton (2015) calls for a theoretical framework of processes and events.
Several ontologies are defined to face this definition problem such as the Basic
Formal Ontology (BFO) (Smith et al., 2015) or the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) (Masolo et al., 2003). As an example, we give
an introduction into the BFO in the following.

BASIC FORMAL ONTOLOGY (BFO)

The BFO makes use of the SNAP and the SPAN ontologies (Grenon & Smith, 2004)
already mentioned in Section 3.2.2. The components of the two ontologies are called
continuants and occurrents:

• A continuant endures through time, can lose or gain parts and its properties
may change. It has spatial parts but no temporal parts.

• An occurrent exists over a span of time. It cannot undergo change but its
occurrence may result in changes in various continuants. An occurrent has
temporal and possibly also spatial parts.

Galton (2016) gives an example to illustrate the difference between SNAP and SPAN
and, therefore, for continuants and occurrents. He considers a person as a continuant.
The portrait of this person can be captured through snapshots at particular dates,
e.g. every year. This describes a SNAP ontology since the person in the snapshots
is always the same continuant. The corresponding SPAN entity of the sequence of
portraits is the person’s life which is an occurrent. This entity consists of multiple
temporal parts which are by itself occurrents. This can be, for example, the person’s
schooldays or the person’s wedding. However, each of these occurrents depends on
the continuant, the person. Projecting these concepts to an IoT application, consider
a smart mobility solution with buses in a city. In this, each bus embodies a continuant
while the corresponding rides between the stations are occurrents.

The BFO does not distinguish any further between events and processes. It defines
a process p as "an occurrent that has temporal proper parts and for some time t, p
s-depends_on some material entity at t" , where "a material entity is an independent
continuant" (Smith et al., 2015). s-depends_on, which stands for specifically depends
on, means that if an entity b s-depends_on c, b can only exists if c exists too. In the
previous smart mobility example, the bus ride s-depends_on the bus. So, a bus ride
is a process for some time t and the material entity is the bus itself but also e.g. each
passenger.

92 3. GEOSPATIAL INTERNET-OF-THINGS

The process notion in the BFO includes that processes do not have qualities, which
means that corresponding occurrents cannot change for the time they exist (Smith
et al., 2015). This implies for the process "bus ride" that the speed of motion must
either be constant - which is unrealistic - or the process must be subdivided into mul-
tiple processes with temporal proper parts. Galton (2016) states that instantaneous
speed at a timestamp cannot be snapped in BFO. The only possibility is to reduce the
measurement of speed to "average speed over an interval" which supports scientific
correctness but "is not so friendly from the point of view of more everyday human
purposes".

PROCESS AS PATTERNS OF OCCURRENCE

Processes can also be understood as abstract entities whose occurrences in the
physical world cause continuants to undergo change (Özgövde & Grüninger, 2010).
This view uncouples the process notion from the concepts of continuants and occur-
rents. Özgövde & Grüninger (2010) further define process occurrences as occurrents
which instantiate or realize the corresponding abstract processes. They may have
multiple temporal parts (sub-occurrences) and have a beginning as well as an end
point in time. Galton (2016) gives the example of "walking" as an abstract process,
which he calls a pattern of activity. This process can be realized in the physical world
by process occurrences, which can be initiated by continuants. For instance, the
following two occurrences describe the process "walking" in the real world realized
by a person named Mary:

1. Mary is walking

2. Mary is walking along the path from 10 am to 10.30 am

However, Galton (2016) argues that although both process occurrences are instances
of the abstract process "walking", the occurrences describe different patterns. While
Mary is walking characterizes a state in which Mary is in, Mary is walking along the
path from 10 am to 10.30 am has an event character. He concludes that two types of
processes exist: open and closed processes:

• An open process describe an open-ended activity which can be repeated in
the same way endlessly, such as human activities (walking, driving) or non-
human activities (raining, coastal erosion). Although the process itself does not
determine when it comes to an end, any actual occurrence - e.g. of walking -
must come to an end, which is imposed by external factors.

• A closed process, on the other hand, is a finite routine with an intrinsic start and
end point. If the process occurrence is completed, this realization cannot be

3. GEOSPATIAL INTERNET-OF-THINGS 93

continued. But another instantiation of the same process can start. Examples
for closed processes are a specific walking tour or a bus ride, which involve
human activities, or an explicit rain shower, which is a natural event.

Galton (2016) derives a fragment of an ontology from this view on processes which
is illustrated in Figure 3.5. For closed processes, the additional distinction between
simple and compound closed processes holds. A simple closed process is a chunk of
an open process such as Mary is walking from A to B is made up of Mary is walking.
A compound closed process is an assembly of simple closed processes such as a
flight from New York to Paris with the closed processes take off, flying phase and
landing at particular points in time. Open processes, on the other hand, are divided
into homogeneous with repeating patterns such as walking and inhomogeneous
open processes. The latter one provides the capability to define an open process in
terms of a closed process by a simple repetition operation.

stateprocessevent

abstract continuantoccurrent

is_a is_a is_a

realized_at_instant_asrealized_over_interval_as

open process

open process
homogeneous

open process
inhomogeneous

process
simple closed

process
compound closed

closed process

is_ais_a

is_ais_ais_ais_a

has_part

rep
etit

ion_
ofchunk_of

Source: adapted from Galton (2016)

Figure 3.5: Process as patterns of activity

Unlike the BFO, the advantage of this ontology is that real-world processes (process
occurrences) can also be portrayed at single points in time. Seeing processes as
patterns of activity allows to model open and closed processes as events and states.
At this, an event represents an occurrent, an instantiation of an abstract closed
process in the physical world, which is realized over a time interval. Furthermore,
an abstract open process can be realized and described at an instant as a state of
a continuant in the physical world. Galton (2018) summarizes that "processes are
radically different in kind from states and events: processes are higher-level, abstract
patterns that are realized concretely as states or events".

94 3. GEOSPATIAL INTERNET-OF-THINGS

DERIVING GEOSPATIAL PROCESS, EVENT AND STATE

Regarding the previous sections, it becomes pretty clear that a universal definition of
the concepts of processes and events is not available. So, what about spatiotemporal
events or processes in a Geospatial IoT? The various event definitions for IoT
applications (see Section 3.2.1) and the third stage of spatiotemporal modeling (see
Section 3.2.2), show that the basic unit of spatiotemporal information is a combination
of place (where), time (when) and theme (what):

In place p at time t there is X.

This is referred as Peuquet’s Triad Framework (Peuquet, 1994) and is generally
accepted from a data-modeling point of view. In this generalized view, p can be point,
a region or a grid square; t can be an instant, standard interval like a month or an
arbitrary interval; and X can be an object, a value, an event or process (Galton,
2015).

Combining Peuquet’s Triad Framework with the processes as patterns of occurrence
ontology by Galton (2018), we can now derive the spatiotemporal versions of the
different concepts for a Geospatial IoT.

Definition 3.2 (Geospatial Process)
A geospatial process is an abstract process with a spatial and a temporal
component.

A geospatial process describes an open or a closed process according to Galton’s
processes as patterns of occurrence ontology but necessarily with a spatial compo-
nent. Like in Figure 3.5, a geospatial process can be instantiated or realized through
a geospatial process occurrence in the physical world. This is either a geospatial
event or a geospatial state of a continuant. The Definitions 3.3 & 3.4 can be derived.

A geospatial event can be composed of a sequence of smaller geospatial event.
In this case, "smaller" means that both components (spatial and temporal) are a
subspace of the compound geospatial event. The flight example introduced early
illustrates this concept. The different phases in a flight from New York to Paris, e.g.
taking off in New York, cruising and landing in Paris, have their own trajectory and
temporal spreading and can each be realized by geospatial events. By composing
the flight phases the compound geospatial event "the flight from New York to Paris"
can be modeled. On the other hand, the open process Plane A is flying can be
realized as a geospatial state of the continuant "Plane A". The plane is in this specific
state of flying at a certain instant in time and at a certain location.

3. GEOSPATIAL INTERNET-OF-THINGS 95

Definition 3.3 (Geospatial Event)
A geospatial event is an instantiation of a closed geospatial process in the
physical world, which is characterized over a time interval (with defined start and
end point) and a spatial component. A geospatial event can be described by a
3-tuple containing a spatial part, an interval and a theme (event name).

Definition 3.4 (Geospatial State)
A geospatial state is an instantiation of an open geospatial process in the
physical world which is characterized by a 3-tuple consisting of a time instant, a
spatial component and a theme. It describes a property or activity of a continuant
(theme) at a timestamp. The spatial part specifies the spatial occupation of the
continuant or its property.

3.3 TEMPORAL COMPONENT OF GEOSPATIAL
PROCESSES

Time can be denoted in two ways: a point-based method and an interval-based
method. While some models consider the occurrence time as a time point, other
model it as a time interval. Tan et al. (2009) argue that the event "a light is on for the
last 30 minutes" can only be defined by considering the temporal component of an
event by using time intervals. Sometimes events are modeled instantaneous so that
they have no duration but mark a change in state of e.g. an object (Hornsby & Cole,
2007). In other projects, the event occurrence is modeled by an interval to denote
the duration (Jin et al., 2013).

With the definitions of geospatial events and geospatial states in the previous section,
we meet Tan et al.’s requirement that both temporal events types - punctual and
interval events - are required in an event model for CPS (Tan et al., 2009). The
concept of the abstract geospatial process can model both types either as an open
geospatial process, which is an instantaneous geospatial state of a continuant, or a
closed geospatial process, which instantiates as a geospatial event over an interval
with a start and an end point on the timeline.

3.3.1 TIME DOMAIN

Time describes a one-dimensional space extending from the past to the future, which
is referred as the timeline or time axis. The density of a timeline can be describes as
discrete, dense or continuous. Discrete models are isomorphic to natural numbers,

96 3. GEOSPATIAL INTERNET-OF-THINGS

which implies that each instant has a single successor. Dense and continuous models
are isomorphic to the rational respectively to real number (Özsoyoglu & Snodgrass,
1995). Time itself is continuous but it is conventionally broken into discrete units of
uniform or variable length (Peuquet, 1999). In the discrete model, a so-called chronon
describes an "atomic" time interval, the smallest unit of recorded time depending
on the application. A particular chronon is represented by a natural number on the
timeline. In the dense and the continuous model, on the other hand, another chronon
exists between any two chronons. Güting & Schneider (2005) argues that most
people perceive time as continuous, but discrete representation are often used for
practical reasons. Therefore, the discrete model is used in this thesis.

Temporal locations can be located relatively to other temporal locations on the timeline.
Specifying a temporal location in an absolute system (or anchored time) requires an
agreed standard reference location. In the Gregorian calendar this reference point in
time is the assumed time of Christ’s birth, whilst in cosmological contexts, temporal
locations may be referred to the Big Bang (Galton, 2009). For instance, "2018-11-12
11:00:14" is an absolute time, but "nine days" is relative (or unanchored time).

Several data types can be modeled on the timeline. An instant is named a point on
the timeline, which is represented by a timestamp. In a discrete model, it is actually
not a point but a line segment on the timeline (Özsoyoglu & Snodgrass, 1995). For
instance, assuming a second as the chronon in a discrete model, the timestamp
"2018-11-12 11:00:14" represents the second which lasts from "2018-11-12 11:00:14"
to "2018-11-12 11:00:15". This implies that the exact instant is never precisely known.
A special instant represents the concept of now, which terms the current time as
an instant and separates the timeline into past and future. Further, a period is a
duration of time, which is anchored between two instants. A period can be modeled
by a period timestamp. They can be closed, half-open or open. In the literature, a
set of disjoint anchored periods are called temporal elements (Güting & Schneider,
2005). For modeling an unanchored duration, an interval is used.

3.3.2 GRANULARITY OF TIME

Granularities are introduced for purposes of convenience (e.g. we say "2 years"
instead of "730 days") and for modeling vagueness, e.g. when the exact instant is
not known. Examples are birthdates, which are usually specified at granularity of
days, or train schedules at granularity of minutes. In discrete models, the smallest
possible granularity is that of a chronon, in the previous example a second. Granules
are larger units of grouped consecutive chronons such as minutes, hours, weeks or
years. The largest granularity is the entire timeline. The length of a granule can be
fixed or variable. For instance, a single year has either 365 or 366 days depending
on whether it is a leap year.

3. GEOSPATIAL INTERNET-OF-THINGS 97

3.3.3 ENCODINGS OF TEMPORAL DATA TYPES

In computer systems the temporal data types instant, period, interval and temporal
element are encoded in different standardized formats. Some of them are presented
in this section.

UNIX TIME

A simple representation of instants in computer systems, which uses seconds as
the chronon, is the Unix time (also known as POSIX time or UNIX Epoch time). It
does not support any granularities but simply stores the seconds that have elapsed
since the 1st January 1970 at 00:00:00 UTC time minus the leap seconds. It is an
absolute system with the 1st January 1970 as a standard reference location on the
timeline. In Unix time, each day has exactly 86400 seconds, thus, leap seconds are
to be subtracted since the Epoch. Since a lot of computer systems store the Unix
time as a signed 32-bit number, only 231 − 1 seconds are possible to represent. The
so-called "year 2038 problem" refers to the overflow, which will occur in 2038 leading
possibly to wrong behaviors in computer systems.

ISO 8601:2004

The most common format to encode date and time is the ISO 8601:2004 entitled
Data elements and interchange formats – Information interchange – Representation
of dates and times. The following descriptions are taken from the German adaption
of the standard, which can be found in ISO/TC 154 (2004).

The ISO 8601 covers multiple data and time formats, especially it defines rules
to express dates, time instants, time intervals and repeating time intervals in the
Gregorian calendar. However, all encodings follow the following principles:

• Both data and time formats are ordered descending from left to right, starting
with the largest to the smallest unit of time. This include: year (Y), month (M),
day (D), hour (h), minute (m), second (s) and fraction of second.

• The units have a fixed number of digits in each format. Leading zeros must be
introduced if necessary.

• Two formats, a basic and an extended format, are valid. The extended version
facilitates human readability. It uses the hyphen "-" to separate date values,
while the colon ":" separates the time values. In the basic format theses
separators are omitted.

• Granules can be dropped to reduce accuracy. This is however only valid if
values are dropped in the order from the least to the most significant.

98 3. GEOSPATIAL INTERNET-OF-THINGS

• The standard allows adding decimal fraction to the smallest time value depend-
ing on the particular specification.

Based on these rules, a date can be represented by [YYYY][MM][DD] in basic or
[YYYY]-[MM]-[DD] in extended format with [YYYY] for year, [MM] for month and
[DD] for day. For instance, the corresponding date representation for November 2nd,
2018 in the extended format is "2018-11-02" respectively "20181102" in basic format.
Similarly for local time, the basic format is [hh][mm][ss] and the extended format is
[hh]:[mm]:[ss] with [hh] for hour, [mm] for minutes and [ss] for seconds. Since the
ISO 8601 uses a 24-hour clock system, the string "15:43:27" (or in basic format
"154327") represents 43 minutes and 27 seconds past 3 pm. For UTC time, the letter
’Z’ is added to the time string, while for a difference to local time, a ±[hh]:[mm] (in
basic format ±hmm) can be added. For example, let the previously used time be in
UTC time "15:43:27Z", the corresponding string in Central European Time (CET) is
"16:43:27+01:00".

Date and time formats can be combined to represent an instant in time with a
timestamp including the date. Basically, the date string is concatenated with a
time string separated by the letter ’T’. For the extended format, this compiles to
[YYYY]-[MM]-[DD]T[hh]:[mm]:[ss]. Depending on the time zone, a ’Z’ for UTC or
a difference to UTC ±[hh]:[mm] can be added. For example, the string "2018-11-
02T16:43:27+01:00" denotes November 2nd, 2018 at 43 minutes and 27 seconds
past 4 pm in CET time.

Beside timestamps to define instants in time, the standard allows to represent time
intervals. The simplest representation of an anchored time interval (a period) is
through the concatenation of a start and an end timestamp separated by a slash ’/’.
For instance, the string "2018-11-02T16:43:27+01:00/2018-11-02T17:03:50+01:00"
denotes an anchored time interval in extended format that starts at November 2nd,
2018 at 43 minutes and 27 seconds past 4 pm (CET) and ends November 2nd, 2018
at 3 minutes and 50 seconds past 5 pm (CET).

With the duration format, an unanchored time interval can also be encoded. A duration
expression starts with the letter ’P’ (for ’period’) to indicate that the following must
be interpreted as a duration. The entire expression P[Y]Y[M]M[D]DT[h]H[m]M[s]S
consists of the amount of each unit, where [Y] stands for years, [M] for minutes, [D]
for days, [h] for hour, [m] for minutes and [s] for seconds. Each amount can have one
or more digits. For example, the string "P1Y2M10DT2H30M" defines a duration of
one year, two month, ten days, two hours and 30 minutes. However, it is also possible
to use either a start timestamp and a duration string, or a duration expression and
an end timestamp separated by slash to form an anchored time interval. Table 3.1
illustrates the same anchored time interval in multiple ways.

3. GEOSPATIAL INTERNET-OF-THINGS 99

Table 3.1: Interval definition in IS0 8601

Name Expression

Start-end 2017-08-01T15:43:27/2018-11-02T17:03:50

Start-duration 2017-08-01T15:43:27/P1Y3M1DT2H20M23S

Duration-end P1Y3M1DT2H20M23S/2018-11-02T17:03:50

Source: Author’s illustration

Time intervals can also be recurrent, which is considered in the ISO 8601 standard
as well. Repeating intervals are formed by prefixing "R[n]/" to the interval string,
where ’R’ is the letter and [n] is replaced by a number indicating the amount of
repetitions. If [n] is omitted, an unbounded number of repetitions are realized. E.g.
the string "R5/2017-08-01T15:43:27/P1Y3M1DT2H20M23S" means that the interval
is repeated five times starting from "2017-08-01T15:43:27".

The ISO 8601 is related to various national standards such as the German DIN ISO
8601:2006-09. Also, the W3C defines in the RFC 3339 (Klyne & Newman, 2002) a
profile of the ISO 8601, which restricts the supported date and time formats for the
Internet.

OTHER ENCODINGS

In the history of multimedia systems, there have been various proposed and estab-
lished standards for the notation of times and dates. The RFC 822 (Crocker, 1982)
and its updates define the format of E-mail messages starting from 1982. The most
common encoding was something like "Fri, 2 November 2018 16:43:27 +0100 CET".
But, the valid variations made it difficult to process the date string. Nevertheless, it
remained valid for a very long time, but was finally replaced by its successor RFC
2822 (Resnick, 2001) in 2001, which restricts all formats to the exemplified above.

Other applications used similar but slightly different encodings. In RFC 1036 (Horton
& Adams, 1987), the USENET message type is defined. An example for a date in
this RFC is "Friday, 02-Nov-18 16:43:27 CET". It is also still in common use (e.g.
in HTTP) but lacks a four-digit year. Further, the iCalendar standard (RFC 2445)
(Dawson & Stenerson, 1998) generally adopts the date and time basic format of the
ISO 8601 but introduces a different notation for time zones. The timestamp used
above in the iCalendar format depict as "TZID=CET:20181102T164327".

100 3. GEOSPATIAL INTERNET-OF-THINGS

A time interval is similarly defined by using the parameters DTSTART and DTEND:

DTSTART;TZID=CET:20181102T164327
DTEND;TZID=CET:20181102T170350

3.3.4 TEMPORAL RELATIONS OF GEOSPATIAL PROCESSES

Temporal locations on a timeline can be related to other temporal locations. Like in
the absolute system of the Gregorian calendar, specific instants are numbered by a
timestamp before or after Christ’s birth. Considering temporal relationships between
geospatial event and states in a Geospatial IoT is essential to order, analyze and
link them on a timeline. Tan et al. (2009) argue that for the sake of completion, the
relationships between punctual and interval events should be considered in a CPS
model.

Therefore, the following sections discuss the possible relationships between the
different temporal data types. This includes the relations between two instants, which
is named point-point relations in the literature, between an instant and a period and
vice versa (interval-point relations) and, finally, between two periods (interval-interval
relations) (Vilain, 1982).

3.3.4.1 Point-Point Relations

The interrelations between points on a timeline can be described by primitives in
a logic. Basically, three primitives exist between two points: before, equals, after.
Let a point p and a point q be defined by variables over the set of real numbers IR
representing each an instant on a timeline. The relations in Table 3.2 hold.

Although p and q are real numbers here, the same relations hold for instants in
a discrete time model. Further, the temporal relations between two instants on a
timeline correspond to the temporal relationship between two geospatial states of
one or more continuants.

Table 3.2: Point-Point-Relations

Name Depiction Relation

p equals q p = q

p before q p < q

p after q p > q

Source: based on Vilain (1982)

3. GEOSPATIAL INTERNET-OF-THINGS 101

3.3.4.2 Interval-Interval Relations

The relationship between the temporal components of two geospatial events can be
expressed by an interval-interval relation. Allen’s temporal interval algebra (Allen,
1983) introduced in 1983 is a fundamental building block in temporal reasoning and
provides a set of relations between two intervals I and J and corresponding opera-
tions. From observations, Allen concluded that the amount of topological relations
between these two intervals is limited. In his paper he proposed 13 basic relations
between time intervals which are distinct, exhaustive and qualitative (Alspaugh,
2019).

Table 3.3: Interval-Interval-Relations according to Allen’s interval algebra

Name Depiction Endpoint relation

I precedes J I+ < J−

I meets J I+ = J−

I overlaps J I− < J− < I+ < J+

I finishes J I− < J− ≤ J+ = I+

I starts J I− = J− ≤ I+ < J+

I encloses J I− < J− ≤ J+ < I+

I equivalent to J I− = J− ≤ J+ = I+

I enclosed by J J− < I− ≤ I+ < J+

I started by J J− = I− ≤ J+ < I+

I finished by J J− < I− ≤ J+ = I+

I overlapped by J J− < I− < J+ < I+

I met by J I− = J+

I preceded by J I− > J+

Source: based on Allen (1983)

The intervals I and J are represented by pairs 〈I−, I+〉, where I− ≤ I+, respectively
〈J−, J+〉, where J− ≤ J+. The superscript − indicates the begin instant of the
interval, while + denotes the end instant of the interval. Like in the point-point-
relation, begin and end points are interpreted over IR. Table 3.3 illustrates Allen’s 13
basic relations between the two intervals I and J .

102 3. GEOSPATIAL INTERNET-OF-THINGS

The first column is the name of the relation, the second column defines the relation
graphically by a diagram relating I and J with running time from left to right (I is the
upper interval) and, finally, the third column expresses the relation in terms of the
intervals’ boundaries. For instance, the relation I meets J means that I ends when
J begins. They meet in exactly one instant, which is I+, respectively J−.

From the 13 relations, six pairs are converses; the six relations below equivalent to
are the inverse of the above ones. This means e.g. that if I meets J is true, then
also J met by I holds. The equivalent to relation is its own converse. The predicates
for the relations used in the table are not homogeneously in the relevant literature.
For example, in his original paper, Allen (1983) uses the expression before for the
here illustrated precedes relation. In the following, we use the expressions for the
relations like stated in the table.

Allen’s 13 relations are pairwise disjoint and jointly exhaustive, meaning that given
any two intervals, exactly one of the relations must hold (Galton, 2009). But based on
these 13 interval-interval relations, other relations can be derived through disjunctions.
For instance, the relation, which we call disjoint, describes two intervals that do
not share one common instant. This is achieved by linking the precedes and the
preceded by relationships logically by an "or" function, or in terms of endpoint
relations I+ < J− ∨ I− > J+.

For convenience reasons, Allen (1983) suggests collapsing the three during relations
(encloses, starts, finishes) to derive the contains relation. Basically, it is identical with
the encloses relation but includes the boundary points. The derived relations and
their endpoint relations are shown in Table 3.4. Since the relations are disjunctions
of the 13 basic relations, a distinct graphical representation is not possible.

Table 3.4: Derived Interval-Interval-Relation

Name Endpoint relation

I disjoint J I+ < J− ∨ I− > J+

I contains J I− ≤ J− ≤ J+ ≤ I+

I contained by J J− ≤ I− ≤ I+ ≤ J+

Source: Author’s illustration

Like mentioned, derived relations are disjunctions of the 13 basic relations, which
can be created for convenience purposes. Overall, 213 = 8192 relations can be
theoretically derived, which is known as the full interval algebra (Galton, 2009).
However, we only consider the one stated in the table.

3. GEOSPATIAL INTERNET-OF-THINGS 103

3.3.4.3 Interval-Point Relations

Finally, to analyze the temporal relation between a geospatial state and an event,
a period must be related to an instant. In the literature, this is called interval-point
relations, which were introduced by Vilain (1982). He expands Allen’s interval algebra
for reasoning about time intervals by adding new primitive relations to deal with time
points.

Let I be an interval represented by a pair 〈I−, I+〉, where I− ≤ I+. Again, the
superscript − indicates the beginning of the interval, while + denotes the ending of
the interval. Begin and end points are interpreted over IR. Further, let a point p be
defined by a variable over the set of real numbers IR representing an instant (point)
on a timeline. The following five relations between I and p can be compiled (see
Table 3.5).

Table 3.5: Interval-Point-Relation

Name Depiction Endpoint-point relation Inverse

I precedes p p > I+ p preceded by I

I finished by p p = I+ p finishes I

I encloses p I− < p < I+ p enclosed by I

I started by p p = I− p starts I

I preceded by p p < I− p precedes I
Source: based on Vilain (1982)

The first column represents the name of the relation, the second column depicts
a graphical representation with a timeline running from left to right, while the third
column states the endpoint-point relation. The last column shows the inverse of the
relations, which are named point-interval relations.

Like in Allen’s interval algebra, several relations can be derived from these five basic
relations. For reasons of convenience, we derive an equivalent to and a contains
relation. The equivalent to relation holds if both, the interval’s start and end point,
are equal to the point; the contains relation is basically a encloses relation including
the boundary points of the interval (see Table 3.6). Note that originally Vilain (1982)
calls the encloses relation "contains" and, therefore, is not equivalent to our derived
contains relation.

104 3. GEOSPATIAL INTERNET-OF-THINGS

Table 3.6: Derived Interval-Point-Relation

Name Endpoint-point relation Inverse

I contains p I− ≤ p ≤ I+ p contained by I

I equivalent to p I− = p = I+ p equivalent to I
Source: Author’s illustration

3.4 SPATIAL COMPONENT OF GEOSPATIAL PROCESSES

Continuants and occurrents in our model have a spatial component like defined in
the geospatial state and event type. Spatial components are used to specify the
spatial location (e.g., longitude and latitude), spatial extent (e.g. area, perimeter),
shape, as well as elevation defined in a spatial reference frame (Shekhar et al., 2015).
Usually, representations of the geographical reality in GIS are distinguished into
either geographical fields or geographical objects. Geographical fields represent a
continuous geographical variable over some region of the Earth. This can be for
instance remote sensing images obtained by sensor systems. Geographical objects,
on the other hand, represent individualizable entities of the geographic realm, whose
locations are described by georeferenced sets of coordinates. The spatial component
of geospatial states of continuants or events embody the character of geographical
objects. Hence, we focus here on the second type of geographical representation.
The section describes how to establish a spatial reference for geospatial processes,
how to represent this reference in a geometry model, different formats to decode
geometries and, finally, the possible relations between geometries.

3.4.1 SPATIAL REFERENCING

Spatial referencing or georeferencing describes the procedure of assigning locations
to atoms of information. It is especially mandatory in GIS because all information
must be mapped to the surface of the Earth. Thus, spatial processes, events and
states must be georeferenced to a unique location. Understanding the unique location
means to be familiar with the used domain and the applied system. For instance, a
georeference called "London" is not globally unique if the domain is unknown, since
there might be several cities called London. If the embedded domain of e.g. "Great
Britain" is unknown, the actual location cannot be perceived. Further, the system of
"city names" is a mandatory requirement to understand the georeferenced location.
So sharing locations is only useful and valid, if the receiver knows the domain of the
geospatial information and the system that is used.

3. GEOSPATIAL INTERNET-OF-THINGS 105

Geographical locations can be described in many ways, but there are two basic
types of georeferencing. The place name type of georeferencing like in the London
example refers to indirect or informal georeferencing, while georeferencing based on
longitude and latitude or other numerical spatial referencing systems is called direct
or formal georeferencing (Hill, 2006). Both types of georeferencing are described
briefly in the next sections.

3.4.1.1 Indirect Georeferencing System

In an indirect georeferencing system, geographical locations are determined by
names and not by including explicit coordinates. Names cover geographical codes or
addresses, which are related to known locations. The following compilation shows
some indirect georeferencing systems, how and why they are used:

• The earliest and most commonly used georeference in everyday activities
are place names, which work on different scales. While a lot of names are
universally understood (such as "London, capital of Great Britain"), other are
only recognized by locals. Sometimes place names indicate large bodies such
as continent names, at other times exact locations (e.g. "Brandenburg Gate in
Berlin, Germany").

• Postal addresses and postcodes work similarly to place names but use a
hierarchical system with street addresses on the lowest level. Since mostly
street names are only unique in local areas, the postal address includes often
higher levels such as city or country names.

• In the EU, NUTS denotes a hierarchical classification for addressing spatial
areas used in official statistics. They are especially applied to map different
statistical parameters in several spatial resolutions.

• The 2013-founded what3words1 is a global indirect georeferencing system
of locations with a 3x3 meter resolution. Each cell is encoded by three se-
mantically incoherent words separated by dots. For instance, the string "///dol-
phin.dressy.stormy" is assigned to the Quadriga atop the Brandenburg Gate
in Berlin. The combination of these words is globally unique and can be used
to describe locations based on natural language which is more memorable for
humans than numbers.

Indirect georeferencing systems have advantages especially in everyday use or for
humans to perceive and remember georeferenced locations. Place names e.g. are

1https://what3words.com/de

106 3. GEOSPATIAL INTERNET-OF-THINGS

used in conversations, correspondence, reporting and documentation. However,
additional steps are required to identify the corresponding location to a place name
on a map. For instance, gazetteers, which are dictionaries of place names, must
be consulted to translate between indirect and direct georeferencing to obtain the
geospatial location on a map (Hill, 2006).

3.4.1.2 Direct Georeferencing System

In direct georeferencing systems, coordinates in some Coordinate Reference Sys-
tem (CRS) are utilized to define any point in space uniquely. The CRS defines a
coordinate system that is related to the Earth using a so-called geodetic datum.
Together with a specific coordinate system, a direct position can be indicated by a set
of coordinates (Seeger, 1999). For doing so, reference surfaces of the Earth must be
defined.

GEOID

The size and shape of the Earth is not uniform. Thus, reference surfaces of the
Earth must be established to define points in space uniquely. For instance, the geoid
represents the equipotential surface of the Earth’s gravity field that approximates
best to mean sea level. This means that any point on that surface has the same
effective potential with force of gravity acting perpendicular to the surface. With this
conceptual surface defined, heights can be measured in accordance to a stable
reference surface (Huisman & de By, 2009).

ELLIPSOID

For defining position coordinates, a reference surface is also mandatory. The ellipsoid
is described by an ellipse which is rotated around the polar axis. It approximates the
geoid but is defined by mathematics rather than by physics. This allows to project
position coordinates onto a mapping plane. The relationship between the geoid and
an ellipsoid is part of the geodetic datum.

Ellipsoids can be defined locally or globally depending on the application. Local
ellipsoids try to fit the geoid best for the area of interest such as a country or a
continent. For Europe and especially the land surveying in Germany, the Bessel ellip-
soid was an important reference surface, before the European Terrestrial Reference
System 1989 (ETRS89) with its reference ellipsoid (GRS80) was introduced (Bill,
2016). Global ellipsoids on the other hand try to approximate the geoid globally. Over
the course of geodetic history, several global reference ellipsoids had been defined.
In 1909 the US geodesist Hayford introduced an ellipsoid, which was acknowledged
as the international ellipsoid in 1924 by the International Union for Geodesy and

3. GEOSPATIAL INTERNET-OF-THINGS 107

Geophysics (IUGG). Since the approximation of the ellipsoid was regarded as in-
sufficient in 1967, the Hayford ellipsoid was replaced by the Geodetic Reference
System 1967 (GRS 1967). Subsequently, the World Geodetic System 1984 (WGS84)
was acknowledged as the international ellipsoid in 1984, which is still generally valid
(Huisman & de By, 2009).

The geodetic datum defines a set of constants that specify the position and orientation
of the ellipsoid to the Earth. Besides the geodetic ellipsoid, the datum consists of
a so-called fundamental point with a latitude (ϕ), longitude (λ), a height (h) and a
geodetic azimuth. The fundamental point is located best in the center of the desired
area of the Earth’s surface. For example, the Potsdam Datum is based on the
Bessel ellipsoid and the fundamental point Rauenberg in Berlin. It has a sufficient
approximation for the surface of Germany.

GLOBAL COORDINATE SYSTEMS

Various kinds of CRSs are used to position data in space. A general distinction is
between global and planar coordinate systems. Global coordinate systems can be
used to locate information on the Earth’s surface in 3D space or in 2D space on the
reference surface. These can be geographic or geocentric coordinate systems.

 φ

 λ

 h

P

p

λ=90

φ=0
λ=0

λ=-90

φ=-90

φ=90

λ=-180, 180

Source: Author’s illustration

Figure 3.6: Geographic coordinates

108 3. GEOSPATIAL INTERNET-OF-THINGS

Geographic coordinates are the most widely used approach for a global coordinate
system. The Earth is partitioned into lines of geographic latitude (ϕ) and longitude
(λ). While lines of equal latitude (called parallels) form circles on the surface of the
ellipsoid, lines of equal longitudes (or meridians) are ellipses. Figure 3.6 shows
the difference between latitude and longitude. Lines of equal latitude are parallel
to the equatorial plane (gray). On the equator the value for latitude is zero degree
(ϕ = 0°) and increases northwards to 90° at the North Pole and southwards to −90°
at the South Pole depending on the angle. For longitude, the zero meridian (λ = 0°)
is defined as the one passing Greenwich. Going eastwards halfway around the
ellipsoid increases the longitude to 180°, while in the opposite direction (westwards)
it decreases to −180°.

The point p can be represented by the 2D geographic coordinates (ϕ, λ) given a
reference surface (ellipsoid or sphere). In this case, both coordinates are described
by angular units. 3D geographic coordinates (ϕ, λ, h) introduce the ellipsoidal height
h to the system. The point P in Figure 3.6 has the same 2D geographic coordinates
like point p but has also a height h, which is the vertical distance from p to P above
the ellipsoid. The unit of the height is not an angle but a distance unit.

Geocentric coordinates, on the other hand, define points on the surface of the Earth
in terms of (X,Y, Z), where the origin is the mass-center of the Earth and the axes
X and Y are in the equatorial plane. The X-axis passes the meridian in Greenwich,
while the Y -axis is perpendicular to it. The Z-axis corresponds with the Earth’s axis
of rotation. The three axes are orthogonal to one another and form a right-handed
system.

PLANAR COORDINATE SYSTEMS

To locate data on the flat surface of a 2D map, planar coordinate systems are used
such as 2D Cartesian coordinates or 2D polar coordinates. However, this requires
transforming the three-dimensional Earth into a two-dimensional map by methods of
projecting. Map projections are mathematical representations of a geodetic ellipsoid
(or sphere) as a plane (Seeger, 1999). They can be cylindrical, conical or azimuthal
(planar) and always include a distortion in area, distance and/or angular. For instance,
the Universal Transverse Mercator (UTM) is a widely used and famous cylindrical
map projection, whose areas and distances are distorted but it is conformal. The
fundamentals in map projection are omitted here, but can be found in many textbooks
(e.g. Hill, 2006).

In 2D Cartesian coordinate systems two values width (or east E) and length (or north
N) specify a point in 2D. So, given a geographical coordinate in latitude and longitude
(ϕ, λ) two projection functions E = f(ϕ, λ) and N = g(ϕ, λ) have to be applied to
obtain the Cartesian coordinates (E,N). 2D Cartesian coordinate systems have
two principal axes (X- and Y -axis), which intersect perpendicular in a point called

3. GEOSPATIAL INTERNET-OF-THINGS 109

origin. Usually, the X-axis, sometimes called Easting, forms the horizontal, while
the Y -axis (sometimes Northing) denotes the vertical axis (Huisman & de By, 2009).
The map grid terms the plane which is partitioned by equally spaced coordinate lines
in X and Y . Given this, a point p can be defined unambiguously by its coordinates.

2D Polar coordinate systems use polar coordinates to define a point in a plane.
Instead of two axes values, a distance d in length units from the origin and an angle
α denotes a point uniquely. The angle α (or bearing) is given in angular units and
is related in clockwise direction from a fixed direction, called the initial bearing. The
reference direction can be chosen freely, but it often corresponds to true or grid north.

SPATIAL REFERENCE SYSTEM IDENTIFIER (SRID) & WELL-KNOWN TEXT (WKT)

All kind of CRS can be referred to by using a so-called Spatial Reference System
Identifier (SRID) integer, which is a unique value to identify projected, unprojected
and local CRS definitions. GIS and geospatial data vendors use their own SRID
classification or refer to implemented systems of third parties. An important and widely
used classification is issued by the European Petroleum Survey Group Geodesy
(EPSG), whose SRIDs are labeled EPSG-Codes. These codes consist of 4 to 5
digits pointing to the definition of the CRS. For example, the EPSG-code for the
geographical CRS WGS84 is 4326. The OGC manages the definitions of SRID,
while the ISO standard 19111:2007 (ISO/TC 211, 2007a) adopts it.

The CRS definition itself is typically given as a WKT string, which is standardized in
OGC’s Simple Feature Access (Herring, 2011) and published conjointly by the ISO in
ISO/TC 211 (2015). The WKT representation of a CRS includes the geodetic datum,
the geoid, the coordinate system as well as the map projection of spatial objects. For
the WGS84 coordinate system the WKT representation is given in Listing 3.1.

1 GEOGCS["WGS 84",
2 DATUM["WGS_1984",
3 SPHEROID["WGS 84",6378137,298.257223563,
4 AUTHORITY["EPSG","7030"]],
5 AUTHORITY["EPSG","6326"]],
6 PRIMEM["Greenwich",0,
7 AUTHORITY["EPSG","8901"]],
8 UNIT["degree",0.01745329251994328,
9 AUTHORITY["EPSG","9122"]],

10 AUTHORITY["EPSG","4326"]]

Listing 3.1: WKT representation of WGS84 (EPSG:4326)

110 3. GEOSPATIAL INTERNET-OF-THINGS

3.4.2 FUNDAMENTALS OF GEOSPATIAL DATA

Geospatial data represent and model real-world geographic phenomena in a digital
fashion. Huisman & de By (2009) define a geographic phenomenon as a manifes-
tation of an entity or process, which (1) can be named or described, (2) can be
georeferenced and (3) can be assigned a time (interval) at which it is/was present.
This definition complies pretty close with our definitions for geospatial events and
states. GIS often represents these phenomena in a two- or three-dimensional Eu-
clidean space, meaning locations are directly georeferenced and represented by
coordinates (x, y) or (x, y, z) respectively. Accordingly, distances and directions can
be specified by geometric formulas. In 2D the Euclidean space is known as the
Euclidean plane, which is most used in GISs.

An essential distinction of geographic phenomena refers to the extent of the phe-
nomenon in the real-world. For instance, if the study observes the Direct Normal
Irradiance (DNI), this value can be measured anywhere on the surface of the Earth. It
is named a geographic field, since a value can be determined for every location in the
study area. A geographic field can be of discrete or continuous nature. The DNI is a
continuous field measured in watt per square meter (W/m2). The changes in field
values are gradual and, thus, the field can be differentiable. Whereas in a discrete
field, a discrete value is assigned to every location, such as a soil type or a land-use
classification. Geographic fields are usually represented by raster, which is a set of
regularly spaced and continuous cells with associated values. A value (continuous or
discrete) is assigned to each raster cell. It holds that the value is valid for all locations
within the cell (Huisman & de By, 2009). The raster’s resolution determines the size
of the area for a single raster cell.

(a) Point feature

vertex

(b) Line feature

edges

body

(c) Polygon feature
Source: Author’s illustration

Figure 3.7: Different type of features in the Euclidean plane

3. GEOSPATIAL INTERNET-OF-THINGS 111

If the phenomenon solely occurs in certain locations, we call them geographic objects
and are well-distinguished, discrete and bounded entities with undetermined space
between them (Huisman & de By, 2009). Weather stations, e.g., are geographic
objects with well-defined locations, which populate a study area and are erected by
humans. Besides the location, shape, size and orientation can also be stored for
these objects. The shape of a geographic object designates the dimensionality of
the representation. One can distinguish between point, linear and polygon features,
depending on the perception of the object in a certain application. In GIS, this is
called the vector model. Figure 3.7 shows the three different basic data types for
geospatial features in the Euclidean plane.

In the Euclidean plane, a point (a) is defined by a coordinate pair (x, y) in 2D,
respectively (x, y, z) in 3D. The coordinates depend on the chosen CRS. Objects
that are represented by points are zero-dimensional features with no shape and size.
In fact, it depends on the object’s spatial extent in conjunction with the scale in the
specific application. For instance, petrol stations on a navigation map are usually
depictured as points, while in cadastre applications they are probably modeled as
polygons.

A line (or polyline, linestring, arc, edge) (b) represents one-dimensional objects,
which are typically roads, rivers etc. GIS represents a line as a list of vertices (or
nodes). Figure 3.7 shows a simple line with two end vertices line = ((x1, y1), (x2, y2)).
Internal vertices can be added to the list to obtain a more complex line. A vertex itself
is defined like a point. If a line consists of more than two vertices, the straight parts
of that line between two consecutive vertices are called the line segments.

Polygons (c) are modeled by a linestring, whose last vertex is the same point as the
first vertex in the list, a so-called linear ring: polygon = ((x1, y1), ..., (xn, yn)), where
x1 = xn, y1 = yn. A line segment in a polygon is defined as an edge, while the inner
area is named the body. Polygons may also have holes, which are also defined by
linear rings. The actual implementation depends on the chosen encoding, e.g. in
the WKT standard (see Section 3.4.3), the exterior linear ring is defined in counter
clockwise direction, whilst interior linear rings for holes are defined in clockwise
direction (Herring, 2011). Like mentioned, it depends on the application if objects are
represented with polygons, points or lines.

3.4.3 ENCODINGS OF GEOSPATIAL OBJECTS

In GIS and other systems, different formats are used to encode geometries. Some
confine themselves to the three basic vector types like defined in the previous section,
others also introduce more complex geometry features. In the following the common
encodings for geographical objects are introduced.

112 3. GEOSPATIAL INTERNET-OF-THINGS

WKT AND EWKT

The textual markup language WKT can be utilized to encode vector geometry objects,
CRSs of spatial objects and transformations between CRSs. Furthermore, the binary
equivalent Well-Known Binary (WKB) is used in databases. The encodings of
geometric objects are defined in Herring (2011) and cover the three basic spatial
data types (Point, LineString, Polygon) as well as some extended version such as
Curve or Surface.

The geometries are encoded with coordinates in 2D or 3D, and, in addition, may have
an m value. 2D Examples for geometries are given in the Listing 3.2.

1 POINT (6.06799 50.77906)
2 LINESTRING (293126.66164 5629309.72698,293125.14552 5629308.42261)
3 POLYGON ((30 10, 10 20, 20 40, 40 40, 30 10))
4 MULTIPOINT ((6.06799 50.77906), (6.06567 50.7785))

Listing 3.2: WKT for basic geometries

Line 1 to 3 shows the three basic geometry types. Essentially, the string starts with a
keyword determining the type and completes with a list of points. In line 4 a MultiPoint
is depicted, which represents a set of points. Taking a closer look at the coordinates
of the geometries, they obviously do not share a common CRS. While the point is
specified with longitude and latitude in WGS84, the linestring’s coordinates are stated
in UTM zone 32N. In WKT, a CRS is not specified in the encoding of the geometries
itself. Applications must implicitly know which CRS is used for the coordinates.

Overcoming this issue, the PostGIS Development Group (2018) introduces the
Extended Well-Known Text (EWKT) notation, which prefixes the geometry string by a
SRID indicating the used CRS. For the sample geometries this constitutes as follows
(see Listing 3.3).

1 SRID=4326;POINT (6.06799 50.77906)
2 SRID=25832;LINESTRING (293126.66164 5629309.72698,293125.14552 5629308.42261)
3 SRID=4326;MULTIPOINT ((6.06799 50.77906), (6.06567 50.7785))

Listing 3.3: EWKT for basic geometries

Like shown, the EPSG code is added at the beginning of the string to specify the
CRS.

GEOGRAPHY MARKUP LANGUAGE (GML)

The OGC issued in 2000 the first version (V1.0) of the Geography Markup Language
(GML) standard for modeling and encoding geographic information in an XML fashion.
The most recent version 3.2.1 (Portele, 2007) is also adopted as an ISO standard
(ISO/TC 211, 2007b).

3. GEOSPATIAL INTERNET-OF-THINGS 113

GML is based on XML technologies, such as XML encoding, XML namespaces or
XML schema. It supports encoding of spatial and non-spatial properties of objects. It
consists of a set of base schemas, which can be used for the basic three geometries
but also additional geometric primitives (0D, 1D, 2D, 3D), geometric composites
and aggregates. Furthermore, CRS and topology and other information (e.g. time,
coverage) can be modeled.

1 <gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
2 <gml:pos>6.065695599408778 50.778495942043229</gml:pos>
3 </gml:Point>

Listing 3.4: GML example for a point

1 <gml:LineString srsName="urn:ogc:def:crs:EPSG::25832">
2 <gml:posList>293126.661644776759204 5629309.726983548142016

293125.145516532473266 5629308.422605253756046</gml:posList>
3 </gml:LineString>

Listing 3.5: GML example for a linestring

The Listings 3.4 and 3.5 illustrates the GML encoding in version 3.2.1 of the point
and the linestring from WKT examples. The attribute srsName indicates the CRS,
which can be declared in a specific URI format (URL or URN).

GEOJSON

GeoJSON is an open format based on JSON to represent geographic data from the
Simple Feature Access specification (Herring, 2011). The RFC standard (Butler et al.,
2016) was published in 2016 and defines various JSON objects and their combination
to encode geographic features, their properties and spatial extents. However, the
CRS is restricted to WGS84 and units of decimal degree.

A Geometry object consists of a type and corresponding coordinates. In case of
a point, a tuple of longitude and latitude (position) is expected; for a linestring, the
coordinates member is a list of two or more positions and, finally for a polygon,
coordinates must be an array of linear ring coordinate arrays. Listing 3.6 shows the
GeoJSON encoding of a point.

1 {
2 "type": "Point",
3 "coordinates": [6.065695599408778, 50.778495942043229]
4 }

Listing 3.6: Example for a GeoJSON Geometry point geometry

Besides point, linestring and polygon, other derived geometries can be modeled.
This includes e.g. set of points (MultiPoint) or of polygons (MultiPolygon) as well

114 3. GEOSPATIAL INTERNET-OF-THINGS

as GeometryCollections. The use of alternative CRSs is not proposed in the RFC.
However, in the originally proposed specification (Butler et al., 2008) a CRS can be
indicated similarly to the attribute in a GML.

The main object in GeoJSON is a Feature, which consists of a member "type", a
member "geometry", which is a Geometry object, and "properties" for other non-
spatial data. A feature encoding for a linestring object is shown in Listing 3.7.
Besides the geometry, some properties are added. Additionally, an alternative CRS
was specified according to the initially proposed specification in Butler et al. (2008).

1 {
2 "type":"Feature",
3 "geometry":{
4 "type":"LineString",
5 "coordinates":[[293126.66164, 5629309.72699] [293125.14552, 5629308.42261]]
6 },
7 "crs": {
8 "type": "name",
9 "properties": {

10 "name": "urn:ogc:def:crs:EPSG::25832"}
11 }
12 }
13 "properties":{
14 "name":"Drainage pipe",
15 "installed":1981,
16 }
17 }

Listing 3.7: Example for a GeoJSON feature

The third type of GeoJSON objects is the FeatureCollection. It has two members:
"type" and "features", whose value is a JSON array composed of GeoJSON features.

GEOBUF

The fourth encoding, we want to portray here, is based on Google Developers’
protobuf (Google Developers, 2018) and called Geobuf. It is developed by Mapbox
(2018) and provides the capabilities for a compact binary encoding of geographic data.
Geobuf can be applied on GeoJSON data to obtain a nearly lossless compression
into protobuf. According to Mapbox, Geobuf is 6-8 times smaller than the GeoJSON
representation but, simultaneously, faster in encoding and decoding than native
JSON parsing/stringifying. Since it is a binary encoding format, Geobuf are non-
human readable and can only be created by serializing from other formats or digital
objects.

3. GEOSPATIAL INTERNET-OF-THINGS 115

3.4.4 TOPOLOGICAL RELATIONS OF GEOMETRIES

The topological relationship between spatial objects plays an important role in a
Geospatial IoT. Chen et al. (2003) e.g. implemented a system for LBSs with the
relationships within and distance. Jin et al. (2013) use the spatial operators happen-
in, overlap, same-place and distance. In our Geospatial IoT model, capabilities of
expressing the relationships between geospatial events or states to each other are
essential.

Formalized models for defining the topological relationship between two geometries
exist since the early 1990s with e.g. the Four-Intersection Model (4IM) (Egenhofer &
Franzosa, 1991) or the Dimensionally Extended Nine-Intersection Model (DE-9IM)
model (Egenhofer et al., 1993; Clementini et al., 1993). Each of these models defines
a set to describe spatial relations of two geometries in two-dimensional IR2. They
are presented briefly in the following, starting with the 4IM.

3.4.4.1 Four-Intersection Model (4IM)

The 4IM describes binary topological relations between two geometries A and B.
The relations are defined in terms of the intersections between the boundary (δA)
and interior (A◦) of A and the boundary (δB) and interior (B◦) of B. The model can
then be represented by a 2x2-matrix which is called 4-intersection:

I4(A,B) =
(
A◦ ∩B◦ A◦ ∩ δB
δA ∩B◦ δA ∩ δB

)
(3.3)

One can distinguish between 24 = 16 binary topological relations if the values of the
intersections are considered as empty (∅) or non-empty (¬∅).

Let a polygon be defined like before where the boundary is equivalent to the aggre-
gation of all edges and the interior is the body. Given two polygons A,B in IR2, eight
of the 16 relations can be realized: disjoint, inside, contains, touches, equals, covers,
covered by and overlaps (Egenhofer & Franzosa, 1991). Figure 3.8 (a) shows the
manifestation of the 4IM matrix for the A touches B depictured in the center.

For two lines in IR1, a set of eight topological relations can be found, which corre-
sponds to Allen’s interval relations (see 3.3.4.2). The boundary of a line is represented
by the two endpoints, while the interior is the line between the endpoints. However,
the 4IM has some major drawbacks: for instance, relations between a line and a
polygon cannot be modeled with high granularity. Also, the 4IM does not provide a
useful definition of an equals relation between two lines in IR1. The following 9IM can
compensate these shortcomings (Egenhofer et al., 1993).

116 3. GEOSPATIAL INTERNET-OF-THINGS

[
0 0
0 1

]
(a) 4IM matrix

A

B

0 0 1
0 1 1
1 1 1

(b) 9IM matrix

Source: Author’s illustration

Figure 3.8: touches-relation and its representation in 4IM and 9IM

3.4.4.2 Nine-Intersection Model (9IM)

The Nine-Intersection Model (9IM) extends the 4IM by the relation of interior and
boundary of an object to the other object’s exterior. This extension eliminates the
modeling gaps of the 4IM. Let A and B are two objects in IR2 with A’s interior
(A◦), boundary (δA) and exterior (A−), as well as B’s interior (B◦), boundary (δB)
and exterior (B−). The corresponding 3x3-matrix represents the nine intersections
between the objects’ parts, which describe a topological relation:

I9(A,B) =

A◦ ∩B◦ A◦ ∩ δB A◦ ∩B−

δA ∩B◦ δA ∩ δB δA ∩B−

A− ∩B◦ A− ∩ δB A− ∩B−

 (3.4)

Each intersection is characterized by a value empty (∅) or non-empty (¬∅). Therefore,
the matrix can take 29 = 512 configuration. However in IR2, only a small subset can
be realized between two objects.

Between two polygons in IR2 the same set as for the 4IM can be found (Egenhofer &
Franzosa, 1991). In Figure 3.8 (b), the matrix for the A touches B case is illustrated
for the 9IM. However, the 9IM is able to characterize 33 distinct line-line relations in
IR2 (Egenhofer & Herring, 1991). Finally, relations between a line and a polygon can
be distinguished with finer granularity.

3.4.4.3 Dimensionally Extended Nine-Intersection Model (DE-9IM)

Based on the 9IM the Dimensionally Extended Nine-Intersection Model (DE-9IM)
was developed by Clementini & Di Felice (1995). In the so-called dimension extended
method, the standard approach is extended by also adding point and line features,
which results in 6 major groups of binary relationships: polygon/polygon, line/polygon,
point/polygon, line/line, point/line and point/point. The model is further extended by

3. GEOSPATIAL INTERNET-OF-THINGS 117

the dimension of the intersection. In the 4IM and 9IM an intersection is either empty
(∅) or non-empty (¬∅), in the dimensionally extended model an intersection can be
either ∅ (empty), 0D (point), 1D (line) or 2D (area). For 4IM, this results in 44 = 256
different cases, but can be narrowed down to a total of 52 realistic relationship cases
(Clementini et al., 1993). Applying the method to 9IM, it gives a total of 81 realistic
relationships (Clementini & Di Felice, 1995):

Let A and B are two geometry objects in IR2 with A’s interior (A◦), boundary (δA)
and exterior (A−) as well as B’s interior (B◦), boundary (δB) and exterior (B−). The
3x3 matrix for the DE-9IM is defined as follows:

DE − 9IM(A,B) =

dim(A◦ ∩B◦) dim(A◦ ∩ δB) dim(A◦ ∩B−)
dim(δA ∩B◦) dim(δA ∩ δB) dim(δA ∩B−)
dim(A− ∩B◦) dim(A− ∩ δB) dim(A− ∩B−)

 (3.5)

This adds a large number of different relationships with their own names to the
model, which might be unusable and confusing for the user (Clementini et al., 1993).
Therefore, the DE-9IM introduces further topological predicates, which are Boolean
function for testing the spatial relations between two geometry objects. The model
provides eight such spatial relationships between points, lines and polygons (see
Table 3.7).

For example, Figure 3.9 (a) shows the relation crosses for a line (A) and a polygon
(B) depicted on the left-hand side. 1 0 1

0 ∅ 0
2 1 2

(a) Line Crosses Polygon

¬∅ ∗ ¬∅
∗ ∗ ∗
∗ ∗ ∗

(b) Pattern matrix

Source: Author’s illustration

Figure 3.9: Line crosses polygon relation in the DE-9IM

The matrices are not distinct for the relations. For the line crosses polygon relation
in the figure, consider that the line does not end inside the polygon, but crosses
the boundary again and ends in the exterior of the polygon. It would still be named
a crosses relation, although the matrix has a deviating entry (dim(δA ∩ B◦) = ∅).
Thus, pattern matrices can be defined for each primitive with the patterns {∗,∅,¬∅},
where ∗ denotes a wildcard, ∅ implies that the intersection is necessarily empty and
¬∅ accordingly. The pattern matrix for the crosses relation is given in Figure 3.9
(b). Note that for crosses, the given pattern matrix is only valid iff dim(A) < dim(B)

118 3. GEOSPATIAL INTERNET-OF-THINGS

Table 3.7: Topological predicates derived from the DE-9IM

Predicate Name Meaning

A Equals B A and B are topologically equal.

A is Disjoint to B A and B have no points in common.

A Intersects B A and B have at least one point in common. (inverse of disjoint)

A Touches B A and B have at least one boundary point but no interior point
in common.

A Crosses B A and B have some but not all interior points in common.
Further, the dimension of the intersection is less than at least
one of A and B.

A is Within B A lies in the interior of B. They do not share boundary points.

A Contains B B lies in the interior of A. They do not share boundary points.
(same as B within A)

A Overlaps B A and B have some but not all points in common. The intersec-
tion has the same dimension as the geometries themselves.

Source: based on Strobl (2008)

holds. For the other cases dim(A) = dim(B) and dim(A) > dim(B), the pattern
matrix must be modified.

The DE-9IM and the derived topological predicates given in Table 3.7 are accepted
by the OGC’s Simple Feature Access (Herring, 2011). Besides, the eight topological
predicates, other can also be derived. Davis (2007) argues that the relations Covers
and its inverse CoveredBy should be added to the predicate list (see Table 3.8).

Table 3.8: Topological predicates derived from the DE-9IM

Topological Predicate Meaning

A Covers B Any point of B lies in the exterior of A.

A is CoveredBy B Any point of A lies in the exterior of B.
Source: based on Strobl (2008)

Covers is related to the Contains predicate but also includes the boundary of the
first geometry. For instance, a line, which is contained completely in the boundary of
a polygon, is not considered to be true for the Contains but for the Covers relation
(Davis, 2007). Thus, Covers and CoveredBy are implemented additionally in many

3. GEOSPATIAL INTERNET-OF-THINGS 119

geospatial software such as Oracle Spatial (Oracle, 2018) or JTS topology suite
(LocationTech, 2016).

3.5 ARCHITECTURE OF THE GEOSPATIAL IOT

Based on the characteristics of the Geospatial IoT, the geospatial process ontology
(geospatial events and states) derived and defined in the previous sections as well
as the fundamentals of IoT systems (see Section 2), we can now conceptualize an
architecture for a Geospatial IoT.

The basic building blocks of Geospatial IoT architectures are similar to the compo-
nents of generalized IoT systems (compare Figure 2.2). IoT devices (1), which have a
specific stationary or moving location, measure or drive a geospatial process through
sensors or actuators. Whether it is a physical or a virtual thing like in a simulation, a
geospatial process is sensed, modeled or driven on events. Thus, things issue and
receive information about geospatial processes according to our model of real-world
geospatial processes (see Section 3.2.3). As we saw, localizing physical things can
be achieved by common localization techniques such as GNSS.

M2M communication technologies (2) find usage to interconnect things with the
Internet in a way, that information about geospatial processes can be interchanged
bidirectional with the IoT information and services layer. Different message patterns
can be used, but for real-time messaging, mechanisms that push the information
about geospatial processes to the interested consumers are in favor.

The IoT information and services layer (3) stores the measured information in
databases and offers access to the data but also to the underlying layer through web
services. In a Geospatial IoT this can be e.g. achieved with existing technologies
from the Sensor Web idea (see Section 2.5). The layer is also responsible for the
business logic, which can be built traditionally with the SOA pattern. However, as we
saw earlier, applying the EDA pattern here is a much more efficient approach. Rieke
et al. (2018) calls for an event-driven approach to integrate the Geospatial IoT into
traditional SDIs.

The IoT event analysis and visualization layer (4) needs to be able to receive, send
and process events about geospatial processes as well as analyze streams of
them. Like described previously, dashboards are an important access point to
IoT data and devices since they follow principles to display the most important
information at a single screen enabling humans to monitor information at a glance
(see Section 2.6.2). In web-based GISs, geospatial data is usually displayed in a
web mapping application. Combining an IoT dashboard with a web map application
supports both, the enhancement of visualizing real-time events about geospatial
processes as well as the provision of capabilities to merge with traditional geo data

120 3. GEOSPATIAL INTERNET-OF-THINGS

and services. This also holds for the integration of traditional GIS and IoT information
and services. Finally, ESP capabilities could be used to find event patterns and
correlations through corresponding algorithms detecting notable events in an EDA.

3.5.1 GEOEVENT-DRIVEN ARCHITECTURE FOR A GEOSPATIAL IOT

Based on these assumptions and considerations, we develop an architectural design
for an event-driven Geospatial IoT in the following. The foundations of the approach
are first EDAs from an architectural pattern view (see Section 2.5.3) and, second, the
OODA-loop from the control model perspective for smart cities (see Figure 3.2).

GeoEvent distribution

GeoPipe

GeoEvent channel

GeoEvent generator GeoEvent
driven activity

Geospatial Process
(Event & State)

observe

drive

publish notify

GeoEvents
GeoStream

actuate

Source: Author’s illustration

Figure 3.10: An EDA pattern for the Geospatial IoT

Figure 3.10 illustrates the assembly of these two perspectives to an architecture
for the Geospatial IoT based on eventing. Like in the feedback loop, the control
flow is determined by observations of geospatial events and states in the physical
world. These observations are performed by IoT devices equipped with sensors
and/or actuators. The observed geospatial real-world process (event or state), is fed
into the EDA by an event generator, which represents e.g. the sensing device. For
convenient purposes, we generalize geospatial states and events into a data type
named GeoEvent in the following. Although there is a difference in their real-world
perceptions, it is useful for multiple reasons.

First, discrete temporal models do not allow for defining instants in time as we saw
earlier. Depending on the chronon, a timestamp always defines a period of time from
the stated instant to the next possible instant with respect to the used model (see
Section 3.3). Secondly and more significantly, in EDA the term "event" describes
any information in a message that is published by a producer. So technically, we
need to distinguish between events in modeling real-world geospatial processes or
phenomena and GeoEvents in a geospatial EDA. Therefore the following definition
holds for a GeoEvent in a Geospatial IoT architecture.

3. GEOSPATIAL INTERNET-OF-THINGS 121

Definition 3.5 (GeoEvent)
A GeoEvent is a digital representation of a geospatial process, which can be
instantiated as a geospatial event or a geospatial state of a continuant. Thus, a
GeoEvent is a 4-tuple:

(n, g, t,m)

, where n is the name or theme of the underlying geospatial event or state, g
describes its spatial component (e.g. a geometry), t represents the temporal
component (timestamp or time interval) and m is the message payload itself.

The GeoEvent definition derives from the geospatial event definition (see Defini-
tion 3.3) to model real-world geospatial processes, but includes a forth element m,
which represents the message payload itself or how Michelson (2006) calls it, the
event body. Representing geospatial events and states digitally, the t element may
be a timestamp or a time interval. The g element can be any type of spatial reference
such as coordinates in direct referencing systems or addresses in indirect systems.
Finally, the n parameter describes the theme of the event such as its type or its
payload.

The GeoEvent is the basic messaging type in our design. Further, the other com-
ponents of the EDA pattern (see Section 2.5.3) can be determined easily from
Figure 3.10. A GeoEvent generator publishes GeoEvents to a GeoEvent channel.
A generator embodies e.g. a sensor node, which observes a geospatial event or
a geospatial state, but may be also another system component in the architecture,
which issues GeoEvents. The GeoEvent channel describes the medium that is
used to transfer the information wrapped in a GeoEvent to filtering and distribution
regulators. Obviously, in the Geospatial IoT, the Internet protocol suite is used as the
transferring medium. GeoEvent processor performs processing functions such as
filtering on the stream of GeoEvents, while downstream GeoEvent-driven activities
are invoked by analyzed GeoEvents. These GeoEvent receivers may issue new
GeoEvents, for instance to actuate and drive geospatial processes like shown in
the figure. Furthermore, we introduce the terms "GeoPipe" and "GeoStream" in the
figure, which are defined in the following.

3.5.2 GEOPIPE CONCEPT

The previous considerations point out that a mechanism is needed to interconnect
the different building blocks of a Geospatial IoT from physical and virtual devices
to processing units sharing GeoEvents in real-time. Hence, our Geospatial IoT
architectural design is based on an EDA pattern to determine the flow of events
and invoke event handling efficiently according to the feedback loop introduced in

122 3. GEOSPATIAL INTERNET-OF-THINGS

Section 3.1. The fundamental components of EDA (see Section 2.5.3) specify the
concept and the different components of the design approach like we described
before. At this, the GeoEvent channel is the medium which is used to transfer the
events from one place to another. In the IoT domain, it is obvious that this refers to
the Internet connectivity, pointedly the use of a TCP/IP stack. However, the actual
Message Exchange Pattern (MEP) is not defined by that, since it depends on the
used application protocol and its features. So before implementing a prototype for
a Geospatial IoT, the exchange pattern for GeoEvents must be defined. Thus, we
introduce the concept of GeoPipes and its requirements, which can be considered
as a pattern for a Geospatial IoT (Herle & Blankenbach, 2016).

Definition 3.6 (GeoPipe)
A GeoPipe is a specific end-to-end connection between a GeoEvent producer
and its distributed consumer(s). It utilizes GeoEvent channels to transfer
GeoEvents in a push-based manner. The name of the GeoPipe corresponds to
the name of the GeoEvent, which is transferred.

In its simplest form its cardinality is one-to-one, but a GeoEvent distribu-
tor might split up a GeoPipe to achieve one-to-many relationships.

Producers can stream their geospatial data to consumers in a push-based way so
that the latter one can process the data instantly. Producers and consumers can
be of different types and hardware ranging from sensor nodes in WGSNs over high
level web services to visualization applications in a web browser and processing
units. GeoEvents are pushed through the GeoPipe to consumers in near real-time.
A GeoPipe is unbranched if producer and consumer of the GeoEvent have a one-
to-one relationship. But, a GeoEvent distributor can split up GeoPipes based on
rule sets to deliver GeoEvents to multiple consumers, which becomes a branched
GeoPipe. However, producers and consumers of GeoEvents are decoupled software
components and services, so that both have no knowledge about the endpoints of
the connection. That includes that neither producers nor consumers knows if the
GeoPipe is unbranched or branched. Further, producers and consumers can be
connected to multiple GeoPipes at the same time.

3. GEOSPATIAL INTERNET-OF-THINGS 123

3.5.2.1 GeoPipe Requirements

We already addressed some requirements for GeoPipes, some are given by the
nature of the EDA pattern. This section provides an overview of specific require-
ments for implementing GeoPipes, which we extract from the architectural pattern,
Geospatial IoT use cases and the modeling of real-world geospatial processes.
The compilation of requirements helps to identify useful and mandatory patterns,
mechanisms and features to facilitate the selection of a suitable application protocol.

The requirements of GeoPipes are multifaceted since it is designated to connect
different kinds of systems and has multiple objectives and issues to solve. The
following chosen requirements are crucial for an implementation and are determined
by different domains.

MESSAGING PARADIGM

First, the messaging between instances should follow a push-based manner, mean-
ing, if a GeoEvent is published to the GeoPipe it should be pushed to the consumer
automatically and instantly. The publisher does not address the consumers of
the GeoPipe directly and, thus, does not need to be aware of them. Additionally,
GeoPipes should be consumable by multiple consumers. All instances, which are in-
terested in a GeoPipe, receive the corresponding GeoEvents. The publish/subscribe
pattern is most suitable for these purposes.

SCALABILITY

In the Geospatial IoT, hundreds of different producers and consumers of GeoEvents
might participate in a system. Every instance should be able to create, produce and
consume GeoEvents from GeoPipes. Thus, a GeoPipe implementation should be
able to deal with an increasing number of instances. The implementation must be
scalable.

EFFICIENCY

GeoPipes should facilitate the exchange of geospatial data (GeoEvents) in real-time
between instances, possibly between multiple instances at the same time. Since the
GeoPipes concept should be used to implement real-time applications, efficiency is a
crucial requirement.

INTEROPERABILITY

Instances, which consume and produce GeoEvents using GeoPipes, might be of any
type. In Geospatial IoT, the first building block consists of small resource-constrained

124 3. GEOSPATIAL INTERNET-OF-THINGS

devices, which observe or drive geospatial processes in the physical world. Although
these devices have limited power, storage and restricted processing capabilities,
they should have the same rights as any other participants in the event architecture.
A small and restricted sensor node in a WGSN should have the same prospects
to participate in terms of GeoPipe communication as the industrial machinery in a
factory. This especially enforces the next requirement.

LIGHTWEIGHT

An application protocol to implement the GeoPipes concept must be lightweight,
meaning the overhead in terms of message size and connection establishment
should be as small as possible. Devices with limited resources are not able to handle
large protocol headers or data. So, a protocol with a minimal footprint is needed.

SECURITY

Authorization and authentication are also big issues in Geospatial IoT environments.
In the GeoPipes concept, these factors concern in particular the consumers and
producers of GeoEvents. In critical applications, the questions (1) who has permission
to initiate a GeoPipe and publish GeoEvents? and (2) who can consume GeoEvents
from a specific GeoPipe? must be addressed and resolved. Appropriate mechanisms
should be available or applicable in the protocol.

RELIABILITY

For similar reasons, message loss should be avoided or avoidable. In critical IoT
applications such as in early warning systems, alert messages are only conducive,
if they are transmitted reliably. Supporting a reliability mechanism is, therefore, an
enormously important feature.

ADAPTABLE PROTOCOL AND OPEN

The final requirement refers to the protocol and software itself, since we do not want
to create a totally new protocol or software. For establishing a GeoEvent message
type, we need to adapt the protocol and modify the source code of existing software.
Thus, the specification of the protocol and the corresponding software should be
generally accessible and open source.

A protocol, which meets all these requirements, should support the idea behind
the GeoPipes concept. In Section 2.4.2, we already discussed various protocols
suggested in the literature and their suitability for IoT applications. Our prototype
implementation uses an extension of the lightweight IoT protocol MQTT, which
basically meets all the mentioned requirements with some trade-offs. We introduce

3. GEOSPATIAL INTERNET-OF-THINGS 125

new message types in the original protocol which are enriched with geospatial
information to establish GeoEvents. Thus, we call this extension GeoMQTT, which is
described in detail in Chapter 4.

3.5.2.2 Subscribing to GeoPipes

The GeoPipe concept itself describes the connection between a GeoEvent producer
and potentially multiple consumers. GeoPipes are initiated by producers by pub-
lishing GeoEvents with a certain name, a spatial reference, a timestamp (or time
interval) and a message payload. However, consumers must register their interests
in specific GeoPipes to receive the corresponding GeoEvents. This mechanism can
be referred as "subscriping to GeoEvents", which defines the consumer endpoint of
the GeoPipes.

Definition 3.7 (GeoSubscription)
A GeoSubscription can be used by consumers of GeoEvents to connect to a
GeoPipe endpoint. It contains of three filters, which are applied to the three
parameters

(n, g, t)

of GeoEvents. Thus, it can be regarded as a 3-tuple:

(nfilter, gfilter, tfilter)

, where nfilter is a filter applied to the name and gfilter as well as tfilter represent
filters that are applied to the spatial, respectively the temporal component.

A GeoPipe subscription can be accomplished by applying filters to the metadata of a
GeoEvent. The simplest way to subscribe to a GeoPipe is to apply a string compari-
son between an indicated string and the corresponding name of the GeoEvents. If
the strings match, the consumer subscribed to the GeoPipe and its GeoEvents. The
mechanism is identical with the topic-based publish/subscribe scheme described in
Section 2.3.1.3.

Besides the name, the GeoEvent message has also two other meta information,
namely the spatial reference and the timestamp (or time interval). Based on this
information, additional filters are also conceivable. As we saw earlier, for both compo-
nents, spatial and temporal, topological relations can be defined (see Section 3.3.4
and Section 3.4.4). These relationships can be used in combination with spatial
and temporal information to apply a spatial and a temporal filter to GeoEvents. The

126 3. GEOSPATIAL INTERNET-OF-THINGS

conjunction of all three filters allows consumers to specify their interests in GeoEvents
and, therefore, establish GeoPipes more precisely. From these considerations we de-
fine a GeoSubscription as in Definition 3.7. How this is implemented in our prototype
can be learned in detail in Section 4.3.2.

3.5.3 GEOEVENT PROCESSING & GEOSTREAMS

GeoEvents created by GeoEvents generators are sent over the GeoPipe in near-real
time occupying specific GeoEvent channels. Like mentioned, GeoPipes can be
branched by a GeoEvent distributor based on a specific set of rules. This set of
rules can be defined by GeoSubscriptions, which can be registered by consumers
to indicate their interests. According to the EDA pattern (see Section 2.5.3), this
mechanism can be interpreted as a simple event processing, where a GeoEvent
filtering is performed based on the three meta information (name, spatial/temporal
component) and, subsequently, distributed.

GeoEvent processing can thus be defined as a component of an EDA which takes
a GeoPipe as an input and evaluates event processing rules or matches patterns
on the GeoEvents flowing in. Based on the analysis, actions are initiated or new
GeoEvents in output GeoPipes are generated. Figure 3.11 shows the concept of
GeoEvent processing, which is derived from Stonebraker et al. (2005). Events in
EDA are processed by engines. They act on different rule sets or patterns and may
archive events or computational results in dedicated storage.

The GeoEvent processing engine is connected to GeoPipes, through which Geo-
Events are flowing in. Consecutive GeoEvents in a GeoPipe form a stream of
GeoEvents. We term in the following a stream of GeoEvents a GeoStream and
define it in Definition 3.8.

Definition 3.8 (GeoStream)
A GeoStream is a possibly unbounded stream of GeoEvents, which
runs through a GeoPipe sequentially. A GeoStream has a name,
which is equivalent to the name of the GeoPipe. The input elements
(n, g1, t1,m1), (n, g2, t2,m2), ..., (n, gt, tt,mt) are a sequence of GeoEvents with
the name n, spatial components g1, ..., gt, timestamps (or time intervals) t1, ..., tn
and message bodies m1, ...,mt.

An engine, which performs evaluations on or searches patterns in GeoStreams, must
be aware of certain requirements and rules. GeoEvent processing engines must
process the incoming data in real-time to catch up with new arriving data. Stonebraker

3. GEOSPATIAL INTERNET-OF-THINGS 127

Archival
Storage

Rules
&

Patterns

Output GeoPipes
Input GeoPipes

GeoEvent
Processing

Engine

Source: derived from Stonebraker et al. (2005)

Figure 3.11: GeoEvent (GeoStream) processing

et al. (2005) lay down eight rules for processing stream data in real-time which also
hold for processing GeoStreams:

1. In-stream processing: no storing of event while performing operations.

2. High-level language support.

3. Handle stream imperfections.

4. Predictable and repeatable outcomes.

5. Efficiently store, access, and modify state information, and combine it with live
streaming data.

6. Data safety and availability.

7. Distribute processing across multiple processors.

8. Instantaneously processing and responding.

The main requirement claims that event processing engines are efficient, so that
performing actions on the GeoStream catches up with the incoming GeoEvents. But
simultaneously, it demands the system to stay responsible. Increasing load through
increasing temporal resolution of GeoEvents or simply multiple connected GeoPipes

128 3. GEOSPATIAL INTERNET-OF-THINGS

must be handled sophisticatedly. Thus, technical solutions should be developed to
meet these requirements.

Since GeoEvent processing engines can be of different types, the complexity of the
solutions changes according to the desired processing tasks. While the filtering
through subscriptions describes a simple processing engine that processes each
GeoEvent occurrence in a GeoStream independently, complex engines process
incoming GeoEvent in context of prior and future events. Furthermore, ESP engines
act on multiple consecutive GeoEvents in a stream. For meeting the efficiency
requirements for increasing loads, one solution is to utilize DSP engines which
distribute processing across multiple machines. We will see later how increasing load
can be met in our implementation.

CHAPTER 4

GEOSPATIAL
MQTT (GEOMQTT)

A Geospatial IoT with its derived concepts has several requirements on communi-
cation and the applied protocols, we defined before. We implemented the concepts
of GeoEvents and GeoPipes as a basis for a GeoEvent-driven architecture by ex-
tending the MQTT protocol. This extension, which we call GeoMQTT, introduces
novel message types in the base protocol to support the concepts of GeoEvent and
GeoSubscriptions.

This chapter explains the extensions we made to MQTT. First, we evaluate the differ-
ent IoT application protocols (see Section 2.4.2) for the requirements of GeoPipes
and explain, why we chose MQTT for the implementation. Subsequently, MQTT is
introduced in detail by explaining the messaging model and its features (Section 4.2).
Then, the GeoMQTT extension is described. This covers the newly introduced
message types as well as the filtering types for GeoPipes (Section 4.3). The imple-
mentations for the GeoMQTT broker and clients are subjects of Section 4.4. Finally,
we also extended the MQTT-SN protocol with our GeoMQTT extension to support
also sensor nodes in WSNs. This is illustrated in the final Section 4.5 of this chapter.

4.1 GEOSPATIAL IOT APPLICATION PROTOCOL EVALU-
ATION

Before implementing the GeoEvent type and the GeoPipe concept, an analysis of the
given and established IoT application protocols is mandatory. Since we did not want
to implement a complete new protocol for the Geospatial IoT - the requirements of
the IoT hold also for the Geospatial IoT - , we decided to extend one of the existing
protocols introduced before. Table 4.1 summarizes the messaging mechanisms
and core features of the IoT application protocols introduced in Section 2.4.2. Like
already discussed, the suitability of the protocols for sending messages in the IoT
differs, since their capabilities are partially fundamentally different. This results from
the different domains, the protocols were originally developed for. For instance, while
HTTP was originally created to transfer data in the WWW such as websites, the initial
idea behind the development of XMPP was to design a real-time communication
protocol based on XML for instant messaging.

130 4. GEOSPATIAL MQTT (GEOMQTT)

Table 4.1: Compilation of IoT application protocols

Protocol Trans-
port Messaging Secu-

rity
QoS Header Size

HTTP TCP Request/Response TLS No Undefined1

CoAP UDP Request/Response
& Notification DTLS Yes 4 Bytes

MQTT(-SN) TCP &
UDP Publish/Subscribe TLS &

DTLS
Yes 2 Bytes

XMPP TCP Request/Response
& Publish/Subscribe TLS No Undefined1

AMQP TCP Publish/Subscribe TLS Yes 8 Bytes
1 variable, but higher order

Source:Author’s illustration

The evaluation was performed against the list of requirements for GeoPipes de-
manded in Section 3.5.2.1. The result of the evaluation gives insight into the suitability
of the individual protocols to implement the GeoEvent type and the GeoPipe concept
(see Table 4.2). Since we want to implement a GeoEvent-driven architecture for
the Geospatial IoT, a push-based messaging pattern is extremely important. This
already disqualifies HTTP with its Request/Response mechanism. Depending on
the other requirements, it becomes evident that protocols developed and designed
for IoT environments meet the requirements best. Features of CoAP and MQTT
are both dedicated to resource-constrained devices in high-latency or unreliable
networks. Thus, it is hardly surprising that these have their strengths in efficiency,
small message size or interoperability in terms of deployed hardware. Simultaneously,
they are scalable but have their weaknesses in security issues. For the latter one,
the protocols do not provide their own capabilities, but rely on underlying protocols
in the communication stack. The other protocols incorporate larger headers, have
a larger footprint and, thus, provide no interoperability with resource-constrained
devices. They also do not necessarily offer efficiency, e.g. HTTP requires high power
and resource consumption (see Section 2.4.2).

So, CoAP and MQTT may be used to implement the architecture. However, we want
to employ a fully push-based mechanism in our proposed architecture to initiate
real-time data stream. CoAP uses mainly the request/response pattern for commu-
nication but also offers a notification mechanism. However, the publish/subscribe
mechanism provided by MQTT seems to be the more suitable choice to implement
the GeoPipes concept, since it decouples producer and consumer of events in time,
space and synchronization. Multiple consumers of events are conceivable without the

4. GEOSPATIAL MQTT (GEOMQTT) 131

Table 4.2: Evaluation of Requirements Analysis

Requirement HTTP CoAP MQTT XMPP AMQP

Push-based - o ++ o ++

Open + + + + +

Scalability - + + + o

Interoperability - + + - -

Efficiency - ++ + o o

Lightweight -- + ++ - o

Security + - o + +

Reliability (QoS) - o + - +

Size -- + + - +

Source: Author’s illustration

knowledge of the producer. Therefore, we choose MQTT as the basis for our intended
geospatial extension and the implementation of the GeoEvent-driven architecture
for the Geospatial IoT. Nevertheless, it should be mentioned, that MQTT provides
a client id and username/password credentials for authentication of devices, but no
further security mechanisms. The specification (Banks & Gupta, 2014) advises to use
security features from other layers in the stack such as TLS for transport encryption
or VPN on the network level.

4.2 MQTT DETAILS

Message Queuing Telemetry Transport (MQTT) is an open and extremely lightweight
publish/subscribe protocol for M2M communication with special focus on connections
with remote locations and limited network bandwidth. Its design principles cover the
minimization of network bandwidth and device resource requirements, but, simulta-
neously, MQTT attempts to ensure reliability and assures delivery of messages to a
specific degree, known as Quality of Service (QoS). These principles favor its use in
the IoT world of connected devices as well as in mobile applications.

We already introduced the protocol stack in Section 2.4.2.3 and gave some insights
into the standardization process and the version history of MQTT. In this chapter,
we focus on the message exchange pattern and the capabilities MQTT provides
for implementing the mentioned design principles. These are the foundation for the
implemented extension GeoMQTT.

132 4. GEOSPATIAL MQTT (GEOMQTT)

4.2.1 TOPIC-BASED PUBLISH/SUBSCRIBE MODEL

According to Section 2.3.1.3, the publish/subscribe pattern requires three actors: (1)
publishers of events, (2) consumers of events and (3) an intermediary distribution
layer, which receives the published event and pushes notifications to consumers.
In MQTT, this reduces to two components: a client and a server. Clients can
be publishers and/or consumers depending on whether the client publishes or is
subscribed to messages. According to the specification in Banks & Gupta (2014),
clients are responsible for:

1. Establishing the network connection to the server (connect()).

2. Publishing messages that other clients might be interested in (publish()).

3. Subscribing to request messages that it is interested in receiving (subscribe()).

4. Unsubscribing to remove request for messages (unsubscribe()).

5. Disconnecting from the server (disconnect()).

The server is the intermediary layer between clients, which publish messages, and
clients, which are subscribed to messages. It provides the logic of the system and
may handle thousands concurrently connected clients. It has the following tasks in
MQTT:

1. Accepting network connection from clients.

2. Holding the sessions of all persisted clients.

3. Accepting messages published by clients.

4. Processing subscribe and unsubscribe requests from clients.

5. Forwarding of messages that match client subscriptions.

The server is commonly known as the broker (or message broker). The client/server
model in MQTT decouples publisher and subscriber spatially, that means both solely
need to be aware of the name or IP as well as the port of the broker. Further, both
do not need to run at the same time, which provides time decoupling and, finally, it
offers decoupling from synchronization, since subscriber and publisher do not need
to interrupt operating during publishing or receiving.

4. GEOSPATIAL MQTT (GEOMQTT) 133

BASIC INTERACTION MODEL

The general interaction between clients and the broker is illustrated in Figure 4.1. In
the middle, the message broker is acting as the intermediary between the clients.
While the yellow arrow represents the subscribe() operation by the subscribing
clients on the right, the red arrow indicates publishing of a message by a publisher
client (publish()), respectively the forwarding of that message to the subscribers by
the broker.

Publisher-
Client

MQTT

PUBLISH:

Topic: "temperature"

Payload: "21.5°C"

SUBSCRIBE"temperature"

Broker

PUBLISH:
Topic: "temperature"
Payload: "21.5°C"

SUBSCRIBE

"temperature"

PUBLISH: Topic: "temperature"
Payload: "21.5°C"

Subscriber-
Clients

Source: Author’s illustration

Figure 4.1: MQTT Broker

In Section 2.3.1.3, the general idea behind topic-based publish/subscribe mecha-
nisms was explained already. Here an example is depictured. As shown in the
figure, the publish message consists of two parts of information. The payload of
the message represents the data the publisher client would like to share with other
clients. In addition, the client annotates the message with a topic, here "temperature".
The broker receives the message, processes the topic of the message and checks
if clients have been subscribed to the topic. Both clients on the right performed a
subscribe() operation with the topic "temperature" in advance, so that the broker
forwards the message to both subscribers.

TOPIC NAMES & FILTERS

When a client publishes a message, it is annotated with a so-called topic name.
This is an UTF-8 encoded string, which is used by the broker to filter messages

134 4. GEOSPATIAL MQTT (GEOMQTT)

and, subsequently, forwards them to interested clients like in the example before. A
topic can be hierarchically subdivided into several levels, whereby each topic level is
separated by the topic level separator, a forward slash. For instance, this may look
like the following:

house/firstfloor/bathroom/temperature (4.1)

Topics must consist of at least one character and they are case-sensitive. Further, the
initialization of topics at the broker is not necessary. A client can publish a message
with a new topic directly without creating or registering it before.

Topic filters are like topic names, but are used in subscriptions and provide additional
functionalities with so-called wildcards. In the example before (see Figure 4.1), the
publisher uses the topic name "temperature" to annotate his message, while the
subscribers subscribe with the topic filter "temperature". When the message is
received by the broker, it performs a string comparison. If they match, the message is
forwarded to the subscribers. However, the topic filter can also be used to subscribe
to multiple topic names at the same time by using a single-level or a multi-level
wildcard.

The single-level wildcard replaces one topic level in the topic name and is indicated
with a plus sign "+", while the multi-level wildcard "#" covers multiple topic levels, but
can only be the last character in the topic preceded by a forward slash. A topic filter
with a multi-level wildcard matches all topic names that begin with the same pattern
before the wildcard character "#", regardless of the length or number of following
topic levels.

Consider topic name 4.1, subscribers may, for instance, use the following topic filters
containing wildcards:

house/firstfloor/+/temperature (4.2)

house/+/+/temperature (4.3)

house/firstfloor/# (4.4)

These topic filters all match topic name 4.1. In addition, topic filter 4.2 replaces
the third level, so that topics like house/firstfloor/office/temperature are also
matched. Ţopic filter 4.3 uses two single-level wildcards matching all topic names that
are also matched by topic filter 4.2 and, in addition, topic names with other floors such
as house/groundfloor/kitchen/temperature. Last, topic filter 4.4 contains a multi-
level wildcard as the last character. Topic names such as
house/firstfloor/heating or house/firstfloor/bathroom/tub/waterlevel are
matched.

4. GEOSPATIAL MQTT (GEOMQTT) 135

So, the broker performs a simple string comparison in the trivial case if the topic filter
has not wildcards. Otherwise it performs a pattern matching based on the described
procedure on the topic names of the incoming messages.

4.2.2 MQTT CONTROL PACKETS

Communication in MQTT works by exchanging a series of MQTT control packages
in a defined way between client and server (broker). The type of the control package
is determined by four bits in the fixed header of each message. Thus, 16 different
control messages are possible, although in MQTT Version 3.1.1 only 14 are occupied.
The names of the different types are given in Table 4.3 together with the value, the
direction of flow and a description.

Table 4.3: Control Packet types in MQTT

Name Value Direction of flow Description

Reserved 0x0 Forbidden Reserved

CONNECT 0x1 C2S1 Client request to connect to Server

CONNACK 0x2 S2C2 Connect acknowledgment

PUBLISH 0x3 C2S or S2C Publish message

PUBACK 0x4 C2S or S2C Publish acknowledgement

PUBREC 0x5 C2S or S2C Publish received (QoS part 1)

PUBREL 0x6 C2S or S2C Publish released (QoS part 2)

PUBCOMP 0x7 C2S or S2C Publish complete (QoS part 3)

SUBSCRIBE 0x8 C2S Client subscribe request

SUBACK 0x9 S2C Subscribe acknowledgement

UNSUBSCRIBE 0xA C2S Unsubscribe request

UNSUBACK 0xB S2C Unsubscribe acknowledgement

PINGREQ 0xC C2S PING request

PINGRESP 0xD S2C PING response

DISCONNECT 0xE C2S Client is disconnecting

Reserved 0xF Forbidden Reserved
1 C2S: Client to Server
2 S2C: Server to Client

Source: based on Banks & Gupta (2014)

136 4. GEOSPATIAL MQTT (GEOMQTT)

The MQTT control packet types share a common fixed header, but have type specific
variable header and payload, which depend on the capabilities of the message. In the
communication between client and server, the client first establishes a session using
the CONNECT message. In this message, it states, for instance, a mandatory client
identifier. The server answers with a CONNACK packet to confirm the successfully
established connection. We discussed earlier the publish() and subscribe()
functions of the client, which are invoked by a PUBLISH, respectively SUBSCRIBE packet
type. Basically, PUBLISH comprises of the topic name, the payload, as well as flags to
control some features (see Section 4.2.3). The SUBSCRIBE packet type encapsulates
one or more subscriptions composed of the topic filter and an associated QoS level
(see Section 4.2.3.1). Subscriptions are acknowledged by a SUBACK packet send by
the broker to notify the client about the registered subscriptions. The same holds
for UNSUBSCRIBE and UNSUBACK for deregistering subscriptions. These are the most
important message types. The others are utilized for specific features, which are
described in the next section.

4.2.3 FEATURES

4.2.3.1 QoS

Quality of Service (QoS) denotes a mechanism between the sender and the receiver
of a message to achieve a specific guarantee of delivery. This is a key feature in
MQTT since it makes communication even in unreliable networks a lot easier. The
guarantee of delivery can be expressed by different QoS levels, which should be
chosen according to the network reliability and the use case. One of three distinct
QoS level can be selected for delivery:

• QoS 0: At most once

• QoS 1: At least once

• QoS 2: Exactly once

In MQTT these levels determine the guarantee of delivery of a PUBLISH message
in two ways: at first, from a publishing client to the broker and, secondly, from the
broker to the subscribing client. In both cases, the specific QoS level is chosen by the
client. If a client publishes a message to the broker, it may set a QoS field in the fixed
header of the PUBLISH packet to indicate the desired level of assurance. Depending
on the QoS level, the broker reacts to the PUBLISH message (see Figure 4.2).

In (a) the QoS level 0 is chosen, meaning that the message is delivered by best-effort.
The broker does not acknowledge receipt of the message, so that the sender does

4. GEOSPATIAL MQTT (GEOMQTT) 137

Client

PUBLISH QoS 0

Broker
(a) QoS 0

Client

PUBLISH QoS 1

Broker

PUBACK

(b) QoS 1

Client

PUBLISH QoS 2

Broker

PUBREC

PUBREL

PUBCOMP

(c) QoS 2
Source: Author’s illustration

Figure 4.2: Different QoS levels and message exchange from publisher to
broker

not know if the message finally received the broker. Therefore, it is also known as "fire
and forget". QoS level 1 in (b) assures that a PUBLISH message is at least delivered
one time to the receiver. The PUBACK packet is send by the receiver to signal the
receipt of the message. If the message is not acknowledged, the sender resends it
after a reasonable amount of time. This might cause multiple deliveries of the same
message. Last, the QoS level 2 in (c) provides the guarantee of exactly one time
delivery of the PUBLISH message. It is quite slow due to the four-part handshake
shown in the figure. First, the receiver acknowledges the receipt with a PUBREC
message. If it is not received by the sender, it resends the PUBLISH message with the
duplicate flag (DUP) set until it receives an acknowledgement. This acknowledgement
is answered by a PUBREL packet to signal its receipt. Finally, the broker returns a
PUBCOMP packet to ensure that the sender and the receiver know of the one-time
delivery of the message.

In the other case, if a client sends a SUBSCRIBE packet with topic filters, it sets a QoS
level field for each topic filter. In the following SUBACK message, the broker grants the

138 4. GEOSPATIAL MQTT (GEOMQTT)

maximal QoS level for each topic. If the broker receives a message from a publisher,
it is forwarded based on matching of topic name and topic filter. Depending on the
QoS level chosen in the subscription, the messaging sequence is accordingly to
Figure 4.2 but broker and client are interchanged.

4.2.3.2 Persistent Session

When a client connects to the broker, it establishes a session identified by the client
id given in the CONNECT packet. During this session, the client may publish messages
or subscribe to topics, in which it is interested. A session is named persistent if its
state is stored in the broker even if the client disconnects or is offline. The state of a
session covers:

• the existence of a session, even if the rest of the state is empty

• the client’s subscriptions

• QoS 1 and QoS 2 messages send by the client that have not been completely
acknowledged

• QoS 1 and QoS 2 messages received by the client that have not been com-
pletely acknowledged

• QoS 1 and QoS 2 messages that match any subscription of the client during
its offline phase

To establish a persistent session, the client requests it during connecting to the
broker by setting the clean session flag in the CONNECT packet to false. If a session
associated with the client id is stored, the broker must resume communications with
the client based on the state of this session, otherwise a new session is created. The
session must be stored after the client is disconnected. Then after the disconnection
of the client, the broker must store further QoS 1 and QoS 2 messages that match
any of the client’s subscriptions as part of the session state.

If the clean session flag in the CONNECT message is set to true, the client and server
discard any previous session and start a new one. It lasts as long as the network
connection, meaning that the state is not preserved in case of a disconnect.

4.2.3.3 Retained Messages

When a client subscribes to a topic, it normally receives a message annotated with
that topic if another client publishes one. Therefore, the subscriber has to wait until

4. GEOSPATIAL MQTT (GEOMQTT) 139

the next message is published and has no further knowledge about the status of
the topic. In this situation, retained messages can be used to avoid this missing
knowledge. In a PUBLISH packet the retained flag in the header can be set to instruct
the broker to store this message with the corresponding QoS level. Since the broker
stores only one retained message per topic, following PUBLISH packets with the same
topic and the retained flag set to true overwrites the previous one. Now, if a client
subscribes to a topic pattern that matches the topic of the retained message, the
broker sends the retained message immediately after the subscription process has
finished. The subscriber, however, also knows that the message is retained because
the broker sets the retained flag to true.

This way, the subscriber receives a status update of a topic immediately after it
subscribed to it. So it can process this information already without waiting for new
messages. However, since the retained flag is controlled by the publisher, the
received retained message does not necessarily be the last message published with
that topic name.

4.2.3.4 Last Will and Testament

The optional Last Will and Testament (LWT) feature of MQTT deals with the problem
of ungraceful disconnections of clients, meaning that clients disconnect from the
broker without sending a DISCONNECT packet. In IoT systems this may occur e.g. in
environments with unreliable networks causing abrupt loss of connection or devices
running out of power. The feature can help to notify other clients about the ungraceful
disconnection so that they may react in an appropriate way.

For this, a LWT message can be submitted to the broker, which is encapsulated in
the CONNECT packet when the client connects. It is basically an ordinary PUBLISH
message including a topic, a payload, a QoS and a retained message flag. The broker
stores this LWT message until the client disconnects. If it disconnects ungracefully,
the broker sends the LWT message to clients that are subscribed to the last will topic.
Further, if the retained flag is set to true, the LWT message becomes a retained
message for that topic. Otherwise, if it disconnects with a DISCONNECT message, the
broker discards the LWT message.

4.2.3.5 Keep Alive

The keep alive feature allows checking if the connection between client and broker
is still open and that both are aware of being connected. During connecting to a
broker, the client specifies a keep alive time interval in seconds in the header of
the CONNECT message. It represents the maximum time interval that is permitted to

140 4. GEOSPATIAL MQTT (GEOMQTT)

elapse between two consecutive MQTT packets send by the client. The client is
responsible that the interval never exceeds the keep alive value, otherwise the broker
disconnects the network connection to the client after one and a half times the keep
alive time period.

If the client has no reasonable MQTT packet to send, the client must send a PINGREQ
packet before the keep alive period exceeds. The broker answers this request by a
PINGRESP message. This mechanism can also be used irrespective of the keep alive
time interval. It allows the client to check if the network and the broker are working as
expected. The client should receive a PINGRESP packet after a reasonable amount of
time, otherwise it cannot be sure that the network is working and should disconnect.

The keep alive time interval may range from one second to more than 18 hours,
which is typically adjusted to the application. A keep alive value of zero turns off
the keep alive mechanism. In this case, the broker does not necessarily have to
disconnect the client due to inactivity.

4.2.4 MQTT OVER WEBSOCKETS

MQTT utilizes a TCP/IP stack to connect clients with the broker. MQTT clients are
implemented in several languages providing e.g. Desktop applications or clients
running on resource-constrained devices. However, with the basic protocol, the data
send by MQTT cannot be received or sent directly in web browsers, although these
may become the de facto interface for displaying IoT data (Cope, 2019). MQTT
over WebSockets lays the foundation to provide a full-featured MQTT client in web
browsers. Clients that implement MQTT over WebSockets are typically provided by
a JavaScript library.

The WebSocket protocol provides two-way communication between a web application
in a browser and a remote server. With its introduction, it solved the issue that
HTTP does not support push notifications and, thus, polling had to be used to
retrieve updates from a server (Fette & Melnikov, 2011). So, it offers a full-duplex
communication channels over a single TCP/IP connection initiated by a handshake.
The initial connection is established by a HTTP request performed by the client to the
server. In this handshake the client request for an upgrade of the used protocol from
HTTP to WebSockets. The server responds either with a 101 Switching Protocols
message if it agrees, or with any other status code to indicate that the handshake has
not been completed. In case of a successful negotiation, the connection switches to
WebSockets, so that client and server can transfer binary data over the connection.
Otherwise the semantics of HTTP still apply.

4. GEOSPATIAL MQTT (GEOMQTT) 141

In MQTT over WebSockets, the MQTT packets are placed into WebSocket envelopes
by clients and broker. Both need to unpack it first from the WebSocket frame before
being enabled to process it like an ordinary MQTT message. The MQTT mechanisms
such as the connect handshake with CONNECT and CONACK or the order of packet types
for the different QoS are unaffected by this additional WebSocket layer. However, to
apply MQTT over WebSockets, the used browser and the broker need to support
the WebSockets. Since the protocol was standardized in 2011 (Fette & Melnikov,
2011), modern web browsers already provide built-in support for WebSockets. Also,
common MQTT brokers can handle WebSockets natively.

4.2.5 MQTT FOR SENSOR NETWORKS (MQTT-SN)

MQTT is based on a TCP/IP stack, but there is also an extension for connectionless
communication protocols like UDP or ZigBee. This extension is especially useful in
WSNs. Hence, it is called MQTT for Sensor Networks (MQTT-SN). MQTT-SN was
designed in 2008 based on the following design principles (Hunkeler et al., 2008):

• As close as possible to MQTT

• Optimized for tiny battery-operated sensor/actuator devices.

• Considerations of WSN constraints such as high link failure rate, low bandwidth
and short message payload

• Network independent

The architecture for MQTT-SN introduces two more components in a MQTT system
to bind MQTT-SN clients: the clients themselves and a gateway acting like a translator
between the two protocols (see Figure 4.3). The gateway can be implemented using
a transparent or an aggregating approach. A transparent gateway establishes a new
connection to the broker for each MQTT-SN client, while an aggregating gateway has
only one connection to the broker.

MQTT-SN uses more message types than the MQTT protocol to reduce the size
of the packets send or to overcome drawbacks of the unreliable transport. For
instance, long messages are split into shorter ones. While the CONNECT packet in
MQTT includes the client identifier as well as the Last Will and Testament topic and
payload, the CONNECT message in MQTT-SN only requires the client identifier and a
flag for the Last Will feature. If the latter one is set to true, the gateway will request
the client for a Last Will topic and payload in individual message (WILLTOPICREQ and
WILLMSGREQ). The client answers with a WILLTOPIC and a WILLMSG packet including
the topic, respectively the payload. The gateway gathers this information first, before
connecting the client to the broker in a single MQTT CONNECT message.

142 4. GEOSPATIAL MQTT (GEOMQTT)

WSN1

WSN2
MQTT

Broker

MQTT-SN
Gateway

MQTT-SN
Gateway

MQTT

MQTT

MQTT-SN

MQTT-SN

MQTT-SN

Source: adapted from Hunkeler et al. (2008)

Figure 4.3: MQTT-SN architecture

Another way to reduce message size involves reducing redundant information. Con-
sider a device which measures the temperature every five seconds and sends
subsequently a PUBLISH message with the same topic for each measurement. While
in MQTT the entire topic name is send with each message, MQTT-SN clients may
only include a two-byte long "topic id" in the PUBLISH message. The gateway consults
a lookup table to match the corresponding topic name to the topic id and compiles
the MQTT PUBLISH packet, before sending it to the broker. This requires that the
topic name is defined in the lookup table in advance, which the client can achieve by
sending a REGISTER request with the topic name included first. With the correspond-
ing REGACK response by the gateway, the client receives the topic id the gateway
assigned to the registered topic.

These strategies help to reduce packet size and solve the problems of unreliable
networks, so that a MQTT-SN client is able connected to a MQTT broker through a
MQTT-SN gateway. Since the client-gateway combination supports all features of
ordinary MQTT clients, the broker cannot distinguish between MQTT and MQTT-SN
clients. Additional to the features of MQTT, MQTT-SN provides also other features
such as sleeping clients to reduce energy consumption or discovery of gateways.
More information about the message types, features and implementation of MQTT-SN
clients and gateway can be found in the specification of the protocol (Stanford-Clark
& Truong, 2013).

4. GEOSPATIAL MQTT (GEOMQTT) 143

4.3 GEOMQTT EXTENSION

The MQTT protocol, its features and its two extensions, namely MQTT-SN and MQTT
over WebSockets, can be utilized to implement a protocol, which supports the idea
of sharing GeoEvents through GeoPipes in a GeoEvent-driven architecture for a
Geospatial IoT like described in Section 3.5. So, the initial idea behind our extension
GeoMQTT lies in modeling GeoEvents with their four attributes: name of the event,
spatial component, temporal component and payload. Surely, this could have been
accomplished in a simple way, for instance by applying MQTT and placing appropriate
encodings in the payload of each PUBLISH message. However, this would not meet
all requirements for the concept of GeoPipes.

Instead, our favored approach incorporates the parameter triplet (name, spatial
component, temporal component) in the metadata of the message packet, since
GeoEvents should be the intrinsic data type of our proposed architecture for a
Geospatial IoT. Furthermore, simple event processing operations, mainly GeoEvent
filtering, should be applicable to the metadata of a GeoEvent. Alongside the methods
for clients in the ordinary MQTT protocol (connect(), publish(), subscribe(), etc.),
in the GeoMQTT extension we aim at three additional methods enabling clients to
deal with GeoEvents:

1. geopublish() creates and transmits a GeoEvent to the GeoMQTT broker.

2. geosubscribe() registers the client’s interest to GeoEvents based on filtering
operations on the metadata by using GeoSubscriptions.

3. geounsubscribe() deregisters GeoSubscriptions for the client’s session.

With these three introduced methods, GeoEvent can be created and published
by clients. The GeoMQTT broker receives the GeoEvents and performs filtering
operations on the metadata based on registered GeoSubscription. The broker
forwards the GeoEvent to subscribers whose GeoSubscriptions match the metadata
of the GeoEvent. This process is depicted in Figure 4.4.

The MQTT broker, which is the intermediary distribution layer shown in Figure 4.1,
is replace by the GeoMQTT broker, which forwards also GeoEvent besides MQTT
PUBLISH messages to corresponding subscribers. The client on the left side performs
a geopublish() with a GeoEvent sending it to the broker. The GeoEvent has four
parameters: (1) a MQTT topic name, which corresponds to the name of the GeoEvent
(here "temperature"), (2) a geometry, which represents the spatial component of
the GeoEvent (here "Point(50,6)"), (3) a timestamp that is the temporal component
(here "2017-24-11T10:00") and, finally, (4) the payload of the message (here "19.7
°C"). The GeoMQTT broker analyzes the first three parameters disregarding the

144 4. GEOSPATIAL MQTT (GEOMQTT)

Broker

GEOPUBLISH:
Topic: "temperature"
Geometry: Point(50, 6)
Time: 2017-24-11T10:00
Payload: "19.7°C"

Topic: "temperature"

Geometry: Point(50, 6)

Time: 2017-24-11T10:00

Payload: "19.7°C"

GEOSUBSCRIBE

Topic: "temperature"
Geometry: Point(50, 6)

Time: 2017-24-11T10:00

Payload: "19.7°C"

GEOSUBSCRIBE

Source: Author’s illustration

Figure 4.4: GeoMQTT Broker

payload and checks for GeoSubscriptions registered by clients that have performed
the geosubscribe() operation in advance. In the example, the GeoSubscriptions of
the two clients on the right side match the GeoEvent, so that it is forwarded to both.
The capabilities of the spatial and the temporal filtering mechanisms are omitted here
for simplicity but presented in detail in Section 4.3.2.

Since the filtering operation is not performed exclusively on the topic name of the
message by the broker, the extension can be understood as an implementation of an
extended topic-based publish/subscribe pattern. Before, we introduced the different
types of the publish/subscribe mechanisms in Section 2.3.1.3. From these, the
content-based publish/subscribe describes a pattern, in which subscribers choose
different filtering criteria along multiple properties. Although, the spatial and the
temporal components of the GeoEvent are incorporated rather in the metadata than
in the content of the message, this description is the most accurate for the introduced
mechanism.

For the three additional methods provided to GeoMQTT clients, we introduce three
new control packet types. We aim for interoperability with existing MQTT brokers,
therefore changes to the fixed header of control packet are out of question. Hence,
these three new control packet types have to be identified by the same four bits in the
fixed header. Four bits yield in 24 = 16 possible control types with 14 being already
occupied by MQTT control message. We choose the following assignment for the
added control types (see Table 4.4).

4. GEOSPATIAL MQTT (GEOMQTT) 145

Table 4.4: Added Control Packet type in GeoMQTT

Name Value Direction of flow Description

SUBACK_GEOSUB 0x9 S2C1or C2S2 Subscribe acknowledgement
and client’s geosubscribe()
request

UNSUBACK_GEOUNSUB 0xB S2C or C2S Unsubscribe acknowl-
edgement and client’s
geounsubscribe() request

GEOPUBLISH 0xF C2S or S2C Performs geopublish() to
send GeoEvents

1 S2C: Server to Client
2 C2S: Client to Server

Source: based on Herle & Blankenbach (2016)

From Table 4.3, it can be perceived that 0x0 and 0xF are the only free values
for control types assigned to the status "reserved". So, we choose the value 0xF
for representing the GEOPUBLISH control type for sending GeoEvents from clients
to broker and vice versa. Left with one free value, the geosubscribe() and the
geounsubscribe() cannot be realized with a completely unused slot. However, since
both operations are only performed in one way, specifically send from clients to the
broker, we can make use of control types that are send solely from broker to clients.
With this double occupancy but regarding the direction of flow, there is no interference
in the message exchange based on ordinary MQTT. From these considerations arise
that the SUBACK, which is only send by the broker to a client to acknowledge or reject a
subscription, can be transformed to a SUBACK_GEOSUB performing a geosubscribe()
operation when send from client to server. The same holds for the UNSUBACK, which
is transformed into a UNSUBACK_GEOUNSUB in GeoMQTT.

4.3.1 GEOEVENTS WITH GEOPUBLISH PACKET

The GEOPUBLISH control packet can be send by clients to a broker to model and
publish a GeoEvent. Likewise, a GeoMQTT broker forwards a GeoEvent to a client
with the GEOPUBLISH control packet, if that client is interested in it expressed by a
GeoSubscription. The structure of a GEOPUBLISH packet is inspired by the PUBLISH
packet, because it offers a similar mechanism and provides similar features. Thus,
the sole change in the fixed header compared to an ordinary PUBLISH message is
the allocation of the four bits, which identify the packet type (see Table 4.5).

Since the same feature such as QoS or retained messages are also implemented
for the GEOPUBLISH message, the flags in the first byte express the same as in a

146 4. GEOSPATIAL MQTT (GEOMQTT)

PUBLISH message. The QoS follows the same message exchange pattern like in
PUBLISH messages, while the retained message feature (RE flag) is only determined
by the topic name of the GeoEvent.

Table 4.5: GEOPUBLISH fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 GEOPUBLISH packet value (0xF) DUP QoS level RE

1 1 1 1 X X X X

Byte 2 Remaining length

Source: Author’s illustration

Like the fixed header, the variable header of a GEOPUBLISH packet is of similar
structure then the one in MQTT (see Table 4.6). In the PUBLISH packet the variable
header contains the topic name followed by a packet identifier. The topic name is
an UTF-8 encoded string and is preceded by a length field of two bytes indicating
the length of that string. The packet identifier has two bytes and is only present if the
QoS level is 1 or 2. The variable header of a GEOPUBLISH packet contains four fields
in the order given in the figure. Beside the topic name and the packet identifier, a
field for the timestamp/time interval and a field for the geometry are placed in front
of the packet. Both are also UTF-8 encoded strings and include two bytes for the
length field that indicates the number of bytes used by the specific field. For the three
metadata fields, the strings may have a maximum length of 216 B = 65.535 kB.

The temporal string can either be a timestamp or time interval defined in International
Organization for Standardization (ISO) 8601:2004, or a timestamp in Unix time,
which represents the seconds that have elapsed since the 1st January 1970 at
00:00:00 UTC. Both notations were already introduced in Section 3.3.3. Additionally,
a Unix time interval in the form <UNIX timestamp>/<seconds> is also supported.
The geometry string of the GEOPUBLISH packet can be encoded by major encoding
formats for 2D geometries. These include WKT/EWKT, GeoJSON, GML or Geobuf.
We already introduced the encodings in detail in Section 3.4.3. They also provide
the capability to specify the geometries with a range of different CRSs, which can
be parsed and handled by the broker. Although in IoT applications encodings with a
smaller size are more likely, the client may freely choose between the encodings and
CRSs.

Finally, the payload of the GEOPUBLISH packet contains the application message that
is being geopublished. The content, its format and type of data is arbitrary and,
thus, application specific. While the payload may be empty (zero length), its maximal
length can be calculated by subtracting the length of the variable header from the
maximum size of a packet, which is 256 MB.

4. GEOSPATIAL MQTT (GEOMQTT) 147

Table 4.6: GEOPUBLISH variable header

Bit 7 6 5 4 3 2 1 0
Temporal Component
Byte 1 Length MSB1(Temporal)
Byte 2 Length LSB2(Temporal)
Byte 3..N Timestamp or time interval
Spatial Component
Byte N+1 Length MSB (Geometry)
Byte N+2 Length LSB (Geometry)
Byte N+3..M Geometry
Topic Name
Byte M+1 Length MSB (Topic name)
Byte M+2 Length LSB (Topic name)
Byte M+3..O Topic name
Requested QoS
Byte O+1 Packet Identifier MSB
Byte O+2 Packet Identifier LSB
1 MSB: Most Significant Bit
2 LSB: Least Significant Bit

Source: Author’s illustration

4.3.2 GEOSUBSCRIPTION WITH GEOSUBSCRIBE PACKET

The GEOPUBLISH packet models a GeoEvent with the triplet (timestamp/time interval,
geometry, topic name) as metadata of every message send to the broker. The broker
needs to decide to which subscribing clients a specific GeoEvent will be forwarded.
To establish a GeoPipe between producer and consumer of GeoEvents, we already
sketch the mechanism behind "subscribing to GeoPipes" by GeoSubscriptions in
Section 3.5.2.2. Basically, this results in GeoMQTT in the geosubscribe() operation,
which may be invoked by clients.

Based on Definition 3.7 and the three filters of a GeoSubscription (nfilter, gfilter, tfilter),
we introduce the following filter in GeoMQTT:

1. Topic filter (nfilter): The ordinary topic filter of MQTT is inherited.

2. Spatial filter (gfilter): This filter consists of a geometry and a spatial relation
defined in Section 3.4.4.3.

148 4. GEOSPATIAL MQTT (GEOMQTT)

3. Temporal filter (tfilter): Accordingly, this filter consists of a timestamp or interval
and a temporal relation (see Section 3.3.4).

The broker applies the three filter of a client’s GeoSubscription to the corresponding
meta information of the GeoEvents, evaluates the results with a logical conjunction
and forwards the GeoEvent to the client if the conjunction yields true.

Clients may perform the geosubscribe() operation to register their interest in Geo-
Events at the broker by using the introduced GEOSUBSCRIBE packet. Its structure ori-
entates on the SUBSCRIBE packet, thus, their fixed headers (see Table 4.7) are almost
identical. The four bits to identify the control packet type are set to SUBACK_GEOSUB,
which labels a GEOSUBSCRIBE packet if send from client to server like described before.
The other flag bits are unused but must be set to 0b0010 respectively. The variable
header contains a packet identifier of two byte length.

Table 4.7: GEOSUBSCRIBE fixed header

Bit 7 6 5 4 3 2 1 0

Byte 1 SUBACK_GEOSUB packet value (9) Reserved

1 0 0 1 0 0 1 0

Byte 2 Remaining length

Source: Author’s illustration

In the payload of the GEOSUBSCRIBE message, the client may define multiple Geo-
Subscriptions with a QoS it requests the broker. At least one GeoSubscription/QoS
pair must be contained in the message to be accepted by the broker. The payload is
similar to the one of SUBSCRIBE packets in MQTT, which consist of topic filter/QoS
pairs. The UTF-8 encoded topic filter is preceded by two bytes indicating the length
of the topic filter. The QoS occupies one byte postfixing the topic filter. These pairs
are then packed contiguously in the payload.

A GeoSubscription/QoS pair uses the same notation as a topic filter/QoS pair in
SUBSCRIBE packets, but adds two fields for the temporal filter and for the spatial filter
in front. The structure of a GeoSubscription/QoS pair is shown in Table 4.8.

Like the topic filter, temporal and spatial filter are UTF-8 encoded strings with two
preceding bytes for the length. The last two bits of the QoS byte represent the
maximum QoS level requested by the client for the specific GeoSubscription. Multiple
GeoSubscriptions are simply concatenated in the payload. The broker responds by
sending a SUBACK control packet, whose type identifier is set to SUBACK_GEOSUB be-
cause of the double occupancy. Its packet identifier is the same as the GEOSUBSCRIBE
packet that is acknowledged. The SUBACK message contains a return code for each

4. GEOSPATIAL MQTT (GEOMQTT) 149

GeoSubscription/QoS pair, which indicate either that the GeoSubscription failed or
shows the maximum QoS that was granted for that GeoSubscription.

Table 4.8: GeoSubscription/QoS pair in GEOSUBSCRIBE payload

Bit 7 6 5 4 3 2 1 0
Temporal Filter
Byte 1 Length MSB (Temporal filter)
Byte 2 Length LSB (Temporal filter)

Reserved Relation
Byte 3 0 0 0 0 X X X X
Byte 4..N Time stamp/interval
Spatial Filter
Byte N+1 Length MSB(Spatial filter)
Byte N+2 Length LSB(Spatial filter)

Reserved Relation
Byte N+3 0 0 0 0 X X X X
Byte N+4..M Geometry
Topic Filter
Byte M+1 Length MSB (Topic filter)
Byte M+2 Length LSB(Topic filter)
Byte M+3..K Topic filter
Requested QoS

Reserved QoS
Byte K+1 0 0 0 0 0 0 X X

Source: Author’s illustration

In the following sections, a closer look on the temporal and the spatial filter, their
capabilities and configurations is taken.

4.3.2.1 Temporal Filter

The first two bytes state the length of the temporal filter, which expects in the
subsequent bytes a temporal relation and a timestamp or interval (see Temporal
Filter in Table 4.8). The temporal filter (relation & timestamp/interval) can also be
an empty field with zero length. In this case, the filter is turned off matching any
temporal expression of a GEOPUBLISH message.

150 4. GEOSPATIAL MQTT (GEOMQTT)

TEMPORAL RELATION

The temporal relation is set by four bits in the third byte. Overall, 14 different values
for the relation between the timestamp/interval in the GeoSubscription and the
timestamp/interval in GeoEvents can be applied. These values correspond with
the various temporal relations we introduced in Section 3.3.4. The values for the
constellations of timestamps and/or time intervals are given in Table 4.9.

Table 4.9: Coding of the temporal relation

Value Point-Point Relation Interval-Point Relation Interval-Interval Relation

0x0 p equals q I contains p I contains J

0x1 p precedes q I precedes p I precedes J

0x2 p equals q I finished by p I meets J

0x3 p equals q I finished by p I overlaps J

0x4 p equals q I equivalent to p I finishes J

0x5 p equals q I equivalent to p I starts J

0x6 - I encloses p I encloses J

0x7 p equals q I equivalent to p I equivalent to J

0x8 - - I enclosed by J

0x9 p equals q I started by p I started by J

0xA p equals q I finished by p I finished by J

0xB p equals q I started by p I overlapped by J

0xC p equals q I started by p I met by J

0xD p after q I preceded by p I preceded by J
p, q are timestamps
I, J are time intervals

Source: Author’s illustration

Based on Allen’s interval algebra (interval-interval relation column in the table), we
assigned the relation evaluation of point-point relations between two timestamps and
interval-point relation between a timestamp and a time interval. This way, a client
subscribing e.g. with a time interval and a "meets" relation, also receives GeoEvents
with timestamps although "meets" is not defined for an interval-point relation.

TIMESTAMP / TIME INTERVAL

Like mentioned in Section 4.3.1 for the GEOPUBLISH packet, the timestamp/interval
can be specified by an ISO8601:2004 or UNIX notation. This also holds for both

4. GEOSPATIAL MQTT (GEOMQTT) 151

types in the GEOSUBSCRIBE packet. Additionally, repeating timestamps/intervals can
be indicated by using a cron expression and, in case of an interval, a duration in
seconds or in ISO8601:2004 syntax. The following Table 4.10 gives examples for the
different possible configuration.

Table 4.10: Formats of timestamps and time intervals in GeoMQTT

Time stamp Example

<ISOtimestamp> 2015-08-31T12:00Z

<UNIXtime> 1441017813

<cron> (0 0 8 ? * SAT)

Time interval Example

<start>/<end> 2015-08-31T12:00Z/2015-09-15T10:00Z

<start>/<duration> 2015-08-31T12:00Z/PT2H30M

<start>/<seconds> 2015-08-31T12:00Z/10200

<duration>/<end> PT2H30M/2015-08-31T12:00Z

<seconds>/<end> 10200/2015-08-31T12:00Z

<UNIXtime>/<duration> 1441017813/PT2H30M

<UNIXtime>/<seconds> 1441017813/7200

(<cron>)/<duration> (0 0 8 ? * SAT)/PT2H30M

(<cron>)/<seconds> (0 0 8 ? * SAT)/10200
<start>, <end>, <duration> in ISO8601:2004
<UNIXtime>, <seconds> in seconds
<cron> expression according to Terracotta Inc. (2019a)

Source: Author’s illustration

The cron expression in the examples represents a timestamp every Saturday at
8:00 am. In combination with a duration either in ISO syntax or seconds, it can be
used to define repeating time intervals. For instance, (0 0 8 ? * SAT)/PT2H30M
defines an interval, which starts every Saturday at 8:00 am and lasts for 2 hours
and 30 minutes. Since not all relations from Table 4.9 are applicable to repeating
intervals, currently, only the "contains" relationship is supported for this case.

4.3.2.2 Spatial Filter

Similarly, the spatial filter consists of a spatial relationship and a geometry, so that the
broker can match the geometry of incoming GeoEvents against the geometry of the
GeoSubscription with respect to the given spatial relationship. The structure of the

152 4. GEOSPATIAL MQTT (GEOMQTT)

spatial filter is given in the Spatial Filter in Table 4.8. Basically, it has the same layout
as the temporal filter with a preceding two byte length field, one byte for indicating the
spatial relationship and, subsequently, the geometry in a common encoding format.
By leaving the spatial filter (spatial relation & geometry) empty and setting the length
field to zero, the filter is turned off and the broker omits filtering GeoEvents by the
spatial component for the corresponding GeoSubscription.

SPATIAL RELATION

In Section 3.4.4 the theoretical background of spatial relationships was described in
detail by introducing the concepts of 4IM, 9IM and DE-9IM. In the implementation for
the spatial filter, we follow the DE-9IM approach to enable clients to define topological
relationships between points, lines and polygons and, thus, between the spatial
components of GeoEvents and GeoSubscriptions. In fact, the spatial filter provides
the application of one of the eight topological predicates, which are accepted by
the OGC’s Simple Feature Access (Herring, 2011), and, additionally, the derived
predicates Covers and CoveredBy. The HEX values for the topological predicates
are given in Table 4.11.

Table 4.11: Coding of the spatial relation

Value Spatial Relation

0x0 Equals

0x1 Disjoint

0x2 Intersects

0x3 Touches

0x4 Crosses

0x5 Within

0x6 Contains

0x7 Overlaps

0x8 Covers

0x9 CoveredBy

Source: Author’s illustration

GEOMETRY

The geometry can be any 2D geometry indicated by common formats for encoding
geometries. Like in the GEOPUBLISH packet, these formats can be WKT or EWKT,
GeoJSON, GML or Geobuf, which were already introduced in Section 3.4.3 in detail.

4. GEOSPATIAL MQTT (GEOMQTT) 153

A geometry can be declared in a specific CRS. This specified CRS and the encoding
format are equivalent to the requested CRS, respectively the requested encoding
format for GeoEvents that are matched by the GeoSubscription. This includes that if
the matching GeoEvent has a geometry, which is specified in a different CRS and/or
a different encoding format than the GeoSubscription, the geometry is transformed
if possible into the CRS and encoded in the format of the GeoSubscription by the
broker, before it is forwarded to the client.

For both geometries (in the GEOPUBLISH and the GEOSUBSCRIBE messages) also 3D
geometries are conceivable but currently not supported. In this case, also topological
relationships, which act on 3D geometries, are mandatory. Also other spatial relations
or indirect spatial references are imaginable. So, the spatial filter is extensible by
other concepts in the future.

4.3.3 UNSUBSCRIBING FROM GEOSUBSCRIPTIONS

The GEOUNSUBSCRIBE control packet can be send by clients to perform the
geounsubscribe() method with the broker. This deregisters GeoSubscriptions for
the client’s session. The message is marked with the UNSUBACK_GEOUNSUB type and
answered by a UNSUBACK packet, in which the broker acknowledges the deregister-
ing of GeoSubscriptions. Basically, the message has the same structure than the
UNSUBSCRIBE control packet, which deregisters ordinary subscriptions based on a
given topic filter.

This implies that the deregistering process of GeoSubscriptions is solely performed
based on the topic filter. The broker deletes each GeoSubscription that has an
equivalent topic filter than one included in the GEOUNSUBSCRIBE packet disregarding
the temporal and spatial filters. This mechanism is chosen, since it simplifies the
unsubscribing of GeoSubscriptions massively.

4.4 GEOMQTT IMPLEMENTATIONS

4.4.1 GEOMQTT BROKER

Conceptually, the GeoMQTT broker embodies an event processor in an EDA per-
forming simple event processing tasks on single events (see Section 2.5.3). The task
consists of three simple filtering operations, whose rules and patterns are defined
by the GeoSubscriptions and, thus, in accordance with the interested subscribers.
To achieve this, the introduced control packets for GeoMQTT must be implemented
besides the ordinary MQTT messages and features. The implementation details of
the GeoMQTT broker are covered in this section.

154 4. GEOSPATIAL MQTT (GEOMQTT)

CONFLICT HANDLING BETWEEN MQTT AND GEOMQTT

Conflicts may occur between the subscriptions of clients (topic subscriptions or Geo-
Subscriptions) and MQTT PUBLISH messages, respectively GeoMQTT GEOPUBLISH
messages in the broker. For instance, consider a client that is subscribed to a topic
filter with a MQTT subscription and the broker receives a GEOPUBLISH message with
a topic name, which matches the filter of the MQTT subscription. This situation raises
the question whether the message is forwarded to the client or its subscription is
ignored. In our broker implementation, we realized the following conflict handling
strategies (see Table 4.12).

Table 4.12: Conflict handling strategies between MQTT and GeoMQTT

GEOPUBLISH PUBLISH

GeoSubscription Match by topic, spatial and
temporal filter

Not forwarded

Subscription Temporal and spatial informa-
tion are ignored, match solely
by topic filter and converted
to PUBLISH message

Match by topic

Source: based on Herle & Blankenbach (2016)

In the trivial cases, the broker verifies the corresponding filters and forwards the
messages respectively, meaning, if a client subscribed to a topic with a MQTT
subscription and a MQTT publish message is being sent, the broker matches the
topic name to the topic filter and forwards the message accordingly. Following this, if
the client is subscribed by a topic, temporal and spatial filter (GeoSubscription) and
the broker receives a GeoEvent message, all three filters are matched conjunctively
to the meta information of the message and potentially forwarded. In case that a client
is subscribed to a topic filter with a MQTT subscription and a GEOPUBLISH packet is
published, the broker ignores the temporal and spatial information of the message
and solely matches the topic filter. If it matches, the packet is converted to a MQTT
PUBLISH messages and sent to the subscriber. Otherwise, if an ordinary PUBLISH
message is received by the broker and a client is subscribed by a GeoSubscription,
the message is not forwarded, even if the topic filter matches the topic name. This
way, our conflict handling implementation is also compatible to MQTT clients that do
not support the extension.

IMPLEMENTATION

The GeoMQTT Application Programming Interface (API) is implemented in Java
utilizing different libraries. For geospatial computations such as encoding, decoding

4. GEOSPATIAL MQTT (GEOMQTT) 155

or transformation of geometries the open source GeoTools library (GeoTools, 2017),
which is based on the JTS Topology Suite (Eclipse Foundation Inc., 2018a), is
applied. Similarly, the open source libraries Quartz (Terracotta Inc., 2019b) and
Time4J (Hochschild, 2019) are employed to perform calculations on timestamps and
intervals as well as cron expressions.

The developed API is integrated into an existing MQTT broker to extend it to a
GeoMQTT broker. The Java-based MQTT Moquette broker (Selva, 2018) was cho-
sen as a basis for the implementation, since it is a fully compliant MQTT broker and
provides other interesting features. Additionally, with Hazelcast, Moquette version
0.9 provides a feature, which can be used to make the broker clusterizable. This way
load can be distributed among several Moquette instances. We also implemented
the appropriate messages for GeoMQTT to also balance the load of GeoEvents.
This can especially be interesting when extensive filtering and transformation of
coordinates and geometries are required. In the evaluation section (see Section 5.3),
we test the performance of the broker especially with these features. In this context,
we also describe the Hazelcast mechanism in more detail.

4.4.2 GEOMQTT CLIENTS

Several MQTT clients in different programming languages have been extended by the
GeoMQTT features. Thus, the extension can be used by various applications, which
use different languages. First, the same Java API described before was integrated
in the MQTT client Xenqtt version 1.0 (McClure & Dobs, 2015) to obtain a powerful
Java GeoMQTT client. A Graphical User Interface (GUI) was designed to receive
and being able to send GeoMQTT messages (see Figure 4.5). This GUI-based client
is mainly used to debug a system based on GeoMQTT message exchange, since
the messages can be logged in the view on the right side. However, the main benefit
of the Java client lies in the facile integration in other Java frameworks.

Similarly, a GeoMQTT client in Python has been developed based on the Paho
Python Client (Eclipse Foundation Inc., 2018c). It supports Python 2.7.9+ as well as
3.4+. This client is used for several software plug-ins such as a QGIS plug-in (see
Section 6.1) or an extension for a WPS server (see Section 6.4). Finally, a client for
WebSockets in JavaScript has been developed. Since the broker supports sending
and receiving GeoMQTT messages using WebSockets, a web browser can utilize the
GeoMQTT JavaScript client to connect to the broker directly. This client is realized
by extending the Paho JavaScript Client (Eclipse Foundation Inc., 2018b). It is also
applied in several applications (see Chapter 6).

156 4. GEOSPATIAL MQTT (GEOMQTT)

Source: Author’s illustration

Figure 4.5: GeoMQTT Java Client - GUI

4.5 GEOMQTT-SN

For unreliable networks such as WSNs based on ZigBee, the MQTT-SN protocol is
also extended with spatiotemporal capabilities. The extension is called GeoMQTT-SN
and can be used to connect sensor nodes through a GeoMQTT-SN gateway to a
GeoMQTT broker (see Figure 4.6). Like in MQTT-SN, the broker has no knowl-
edge whether a connected client uses GeoMQTT or is connect through a gateway
with GeoMQTT-SN. Thus, the latter one is compatible and implements the same
mechanisms than GeoMQTT.

-SN
 BrokerGatewaySensornode

ZigBee TCP/IP

Source: based on Herle et al. (2018)

Figure 4.6: GeoMQTT for Sensor Networks (GeoMQTT-SN)

4. GEOSPATIAL MQTT (GEOMQTT) 157

To achieve this, new message types are introduced extending MQTT-SN to
GeoMQTT-SN. Like in GeoMQTT, the message types GEOPUBLISH, GEOSUBSCRIBE
and GEOUNSUBSCRIBE can be used by the client, e.g. a sensor node, to perform the
corresponding operations. The control packets are similar to the ones in MQTT-SN.
They are translated by the gateway in the appropriate GeoMQTT packet types and
vice versa. Additionally, two other packet types (GEOMREGISTER & GEOMREGACK) are
introduced, which can be used to register geometries at the broker to avoid redundan-
cies when publishing a GeoEvent and, thus, reduce message size. This is especially
useful for stationary devices whose locations never change.

The general format of a MQTT-SN and also a GeoMQTT-SN message consists of a
two or four byte header and a variable payload. The header encodes the length of the
entire message (either one or three bytes) and consists of one byte for the message
type. While the three byte format of the length field allows for a message size up
to 65535 bytes, the one byte format supports message with a maximum length of
256 bytes. The message type field allows theoretically 256 different message types,
whilst MQTT-SN already defines 27 message types. So unlike in MQTT, we do not
have any issue in choosing a message type value for the five new types. Table 4.13
shows the selected values.

Table 4.13: Added Control Packet types in GeoMQTT-SN

Name Value Direction of flow Description

GEOSUBSCRIBE 0x1E C2G1 Client’s geosubscribe() request

GEOUNSUBSCRIBE 0x1F C2G Client’s geounsubscribe() re-
quest

GEOPUBLISH 0x20 C2G or G2C2 Performs geopublish() to send
GeoEvents

GEOMREGISTER 0x21 C2G or G2C Geometry register request

GEOMREGACK 0x22 G2C Acknowledgement to the receipt
of GEOMREGISTER

1 C2G: Client to Gateway
2 G2C: Gateway to Client

Source: Author’s illustration

4.5.1 GEOPUBLISH IN GEOMQTT-SN

The GEOPUBLISH packet orientates on the PUBLISH packet in MQTT-SN, but adds
flags for spatiotemporal options and a temporal expression as well as a section for a
geometry (see Table 4.14).

158 4. GEOSPATIAL MQTT (GEOMQTT)

Table 4.14: GEOPUBLISH packet in GeoMQTT-SN

7 6 5 4 3 2 1 0

Byte 1 Length

Byte 2 Message Type

Byte 3 Flags

Byte 4:5 TopicID

Byte 6:7 MessageID

Byte 8 ST Flags

TimeType GeomType

Byte 9:m Temporal Expression

Byte m+1:n Geometry

Byte n+1:o Data

Source: Author’s illustration

Basically, between the message id and the section for the data, we added the flags
and the meta information for our extension. The spatiotemporal flags (ST Flags)
determine how the subsequent two section are shaped. This allows for messages of
variable message size. For the TimeType the following assignments hold:

• 0b0000: The message does not provide a timestamp and, thus, the temporal
section is empty. The gateway must add a current timestamp when receiving
the message and before forwarding it as a GeoMQTT PUBLISH message to the
broker.

• 0b0001: The temporal section provides a timeID in the next two bytes, whose
mapping is known by the gateway and used in the final GeoMQTT message.

• 0b0010: A four byte long Unix timestamp is provided in the temporal section.

• 0b0011: The temporal expression is a time interval which consists of a four byte
Unix timestamp and a four byte duration in seconds.

Similarly, the flags for the geometry (GeomType) provide the format of the geometry
section. It may have four different manifestations:

• 0b0000: The geometry is provided by the gateway. The geometry section is of
zero length.

4. GEOSPATIAL MQTT (GEOMQTT) 159

• 0b0001: The geometry field expresses a GeomID (GeometryID) of two byte
size. This identifier can either be registered in advanced by a client using a
register message (see Section 4.5.3), or the GeomID is hard-coded in the
gateway and known by the client.

• 0b0010: The geometry section represents a point in WGS84 and consists of
three bytes for the longitude and three bytes for the latitude. This offers a
resolution for the degree values of 4 decimal places, which is sufficient for the
typical accuracy of an uncorrected GPS unit (according to van Bentem, 2018).

• 0b0011: Same as the previous case, but latitude and longitude consist of four
bytes each, which gives more than 7 decimal places.

• 0b0100: The geometry section consists of a length header and an UTF8
encoded geometry string. By default, the length header is one byte. The least
significant seven bits encode the data, which provides a length of the geometry
string up to 27 = 127 bytes. If the most significant bit is set, the following byte
adds to the length header, so that 215 = 32768 bytes of length are possible.

These options for the temporal and spatial components of a GeoMQTT-SN GEOPUBLISH
message provide the client ways to optimize the length of the message. For instance,
if a sensor node is not equipped with a real-time clock, it may save the bytes for
the timestamp by delegating the completion of the message to the gateway. On the
other hand, if a sensor node is stationary, its location is not going to change, so
that a geometry declaration in each GEOPUBLISH message would cause unnecessary
redundancies. In this case, the client may use predefined geometries, which are
specified in advance.

4.5.2 GEOSUBSCRIBE & GEOUNSUBSCRIBE IN GEOMQTT-SN

The GEOSUBSCRIBE packet in GeoMQTT-SN can be send by the client to the gateway
to carry out a GeoSubscription with the broker. Hence, the client must specify a topic
filter, a spatial and a temporal filter in the message. Since the message may become
quite large, the client has some options to shorten the message. The format of the
GEOSUBSCRIBE message is an extension of the SUBSCRIBE message type but with a
different message type value (see Table 4.15).

The topic filter may be indicated by a string encoded topic filter of variable length
or with a topic id of two bytes. The four most significant bit of the following byte
determine the TimeType, while the other four bytes define the temporal relation like in
the base protocol packet (see Table 4.9). Except for the first case, the TimeType and
the corresponding temporal expression in the following bytes may take one of the
same configurations as in the GEOPUBLISH packet. If the TimeType is set to 0b0000,

160 4. GEOSPATIAL MQTT (GEOMQTT)

Table 4.15: GEOSUBSCRIBE packet in GeoMQTT-SN

Bit 7 6 5 4 3 2 1 0

Byte 1 Length

Byte 2 Message Type

Byte 3:4 Flags

Byte 5:6 MessageID

Byte 7:m TopicFilter or TopicId

Byte m+1 Temporal Flags

TimeType Relation

Byte m+2:n Temporal Expression

Byte n+1 Spatial Flags

GeomType Relation

Byte n+2:o Geometry

Source: Author’s illustration

the temporal filter is turned off and the length of the temporal expression is zero. For
the spatial filter, it holds that the GeomType is identical to the one in the GEOPUBLISH
packet, but if set to 0b0000, the filter is turned off. The spatial relation corresponds to
the specification given in Table 4.11.

When the gateway receives a GEOSUBSCRIBE message by a client, it translates it
to a corresponding GeoMQTT message and sends it to the broker. If the gateway
accepts the GeoSubscription, it assigns a topic id to the received topic name of the
GeoSubscriptions and returns it within a SUBACK message to the client. Subsequently,
the gateway forwards GEOPUBLISH messages with the topic id, a timestamp or interval
as well as a geometry to the client.

Since the unsubscribe mechanism for GeoSubsciptions depends solely on the topic
filter and is identical to unsubscribing from ordinary subscriptions (see Section 4.3.3),
the GEOUNSUBSCRIBE message has the same structure than the UNSUBSCRIBE packet
in MQTT-SN, except for the message type value.

4.5.3 REGISTERING GEOMETRIES BY GEOMREGISTER

In MQTT-SN, the REGISTER packet can be send by the client to register a topic name
at the gateway. The gateway responses with a REGACK message to acknowledge

4. GEOSPATIAL MQTT (GEOMQTT) 161

the registering process and to transmit a corresponding topic id. The client may use
this topic id to annotate PUBLISH messages. In GeoMQTT-SN we establish the same
mechanism for geometries with the introduced GEOMREGISTER packet (see format
in Table 4.16). For instance, stationary clients may use this registering process for
geometries to reduce redundancies in pending GEOPUBLISH packets by specifying a
two byte geometry id instead of a full geometry string.

Table 4.16: GEOMREGISTER packet in GeoMQTT-SN

Bit 7 6 5 4 3 2 1 0

Byte 1 Length

Byte 2 Message Type

Byte 3:4 GeomID

Byte 5:6 MessageID

Byte 7 GeomType

Byte 8:n Geometry

Source: Author’s illustration

If send from client to gateway, the GeomID is empty (0x0000). However if send in the
other direction, the gateway may inform a client about a mapping between a GeomID
and the corresponding geometry encoded in the geometry section. The message
id helps the client to match an acknowledgment message to the geometry register
request. Like in the GEOPUBLISH packet, the GeomType is set to distinguish between
an encoded point in 8 bytes (4 byte latitude and 4 byte longitude) or a geometry
string. Last, the geometry field is of variable length and represents the encoded point
or the geometry string.

The register request is acknowledged by the gateway with the GEOMREGACK packet,
which has the same format than the REGACK message except for its message type
value. Further, the topic id is replaced by the GeomID (see Stanford-Clark & Truong,
2013).

4.5.4 IMPLEMENTATION OF GATEWAY AND CLIENTS

The libraries for GeoMQTT-SN are written in C++. For the gateway implementation,
the implementation of Yamaguchi (2017) serves as a basis and is extended to provide
the desired message types and functionalities. It is mainly tested with ZigBee Pro as
a transport layer protocol running on a Raspberry Pi Model B and Model 2.

162 4. GEOSPATIAL MQTT (GEOMQTT)

The GeoMQTT-SN clients are also implemented in C++. They were implemented
from scratch for different platforms. Especially, clients were developed for several
versions of the Arduino platform and Libelium’s Waspmote (Libelium, 2019). The
clients cover the different message types and protocol mechanisms, but also various
other functionalities have been implemented. For instance, a cron scheduler is
included to enable periodical measurements. Since the mentioned sensing platforms
are single-threaded, the clients are implemented as state machines.

CHAPTER 5

GEOMQTT EVALUATION

In this chapter, we evaluate the previously described spatiotemporal extension to
MQTT, which we call GeoMQTT, in terms of modeling expressiveness of real-world
geospatial events and states and compare the message sizes in the GeoMQTT
protocol with common encodings and protocols for spatial events. Further, we
test the implemented broker regarding its performance in a distributed testbed with
multiple publishers and subscribers of events. Hence, this chapter provides a detailed
view on the evaluations and their results. First, the evaluation objectives are defined.
The second part deals with the modeling of GeoEvents and GeoSubscriptions and
the mentioned comparison to existing formats. Finally, the third part covers the
performance tests of the broker. The chapter finishes with a discussion on the
results.

5.1 EVALUATION OBJECTIVES

The evaluation of the GeoMQTT protocol aims at investigating the protocols capa-
bilities with respect to the requirement analysis for a Geospatial IoT and the related
drawn up concepts. This includes different evaluation questions, which are listed
in the following. Trying to answer these evaluation questions helps to assess the
suitability of the protocol in an EDA for the Geospatial IoT based on the GeoEvent
message type.

1. Expressiveness of the introduced message types (GeoEvent & GeoSubscrip-
tion) for a Geospatial IoT: Are the mechanisms and encodings able to provide
a spatial modeling for typical messages in Geospatial IoT applications?

2. Size and lightweight of the introduced messages: In comparison to other
comparable encodings, are the messages in GeoMQTT and GeoMQTT-SN
suitable in terms of message size? Can they be used and processed by
small resource-constrained devices and, thus, have these devices the same
prospects to participate in the architecture?

3. Efficiency of the geosubscribe mechanism: Is it possible to connect multiple
devices at the same time to the architecture? How many messages can be
processed by the message distributer? Do the extended filtering mechanisms
demand more processing power? Does this affect the throughput of messages?

164 5. GEOMQTT EVALUATION

How is the performance of a single broker when using advanced features such
as geometry transformation?

4. Scalability of the messaging middleware: Does horizontal scaling of the broker
can be used and does it help to overcome the limitation of a single broker? Can
the message throughput be increased by using a GeoMQTT broker cluster?

The first two evaluation objects are investigated in the following Section 5.2. This is
performed based on Geospatial IoT scenarios derived from current scientific projects.
Subsequently, in Section 5.3 the GeoMQTT broker performance is tested in different
testbeds to examine the efficiency and the scalability of the introduced communication
mechanisms, especially the advanced filtering capabilities, in GeoMQTT.

5.2 MODELING OF GEOEVENTS & GEOSUBSCRIPTIONS

5.2.1 GEOSPATIAL IOT SCENARIOS

Objects of the real-world connected in a Geospatial IoT can be stationary or mobile.
Nevertheless in both cases, they have one or multiple spatial properties. According
to the Geospatial IoT framework developed in Section 3.5, objects are exposed to
surrounding spatial processes or actuate processes with spatial features. Depending
on the type of spatial process - open or closed - the corresponding messages send
by the device take the shape of a GeoEvent with a timestamp or a time interval. In
the following, two scenarios of a Geospatial IoT (based on projects) are described
distinguished by stationary and mobile devices. Typical spatiotemporal messages
and subscriptions are derived for each case.

5.2.1.1 Stationary Devices - Structural Monitoring

Stationary devices and sensors are often used in e.g. environmental or structural
monitoring, if the sensing campaign aims at observing changes of a specific phe-
nomenon at a fixed location over time. The position and geometry of the sensor or
the structure do not change or change only slightly over time. But other property
changes of the object can be observed.

In the EarlyDike1 project, which ran for three year until in May 2018, a risk-based
early warning system for sea dikes was implemented and tested (Herle et al., 2018).
Beside other working packages to model and predict external influences for the

1https://www.earlydike.de/en/

5. GEOMQTT EVALUATION 165

dike structure such as waves or storm surges, one part of the project dealt with
integrating sensors into the dike’s body for structural health monitoring of the inner
structure. Oblong sensors were developed that was attached to a geotextile and
built into the polder side of the dike beneath the surface of the slope. These newly
developed sensors measure the moisture penetration, which may occur through
infiltration or rise of the seepage line, as well as the deformation. By placing multiple
sensor pairs parallel to the dike summit in different heights, the structure can be
monitored entirely (see Figure 5.1(a)). Finally, eight sensor pairs were attached to
a dike segment, each readout by a sensor node in a WSN. A gateway ensured the
connectivity to the Internet and GeoMQTT, respectively GeoMQTT-SN was used as
an application protocol. The messages enclosed the measurements, which were
stored and analyzed in downstream steps inside the architecture.

(a) EarlyDike scenario (b) URBMOBI scenario
Source: Author’s illustration

Figure 5.1: Geospatial IoT scenarios

The scenario and the implementation in the EarlyDike project show that the monitoring
of structures involves sending messages of a GeoEvent type. The object, the device
and the sensor itself stay stationary. Nevertheless the geometry and position as
well as the sampling time are important pieces of information. So a message that
is published by a sensor node must have a geometry (in this case a linestring), a
timestamp when the sensor is readout, a topic and a payload indicating the detected
moisture penetration. In Section 5.2.2, we explain the spatiotemporal modeling of a
GeoEvent in the EarlyDike scenario in detail.

166 5. GEOMQTT EVALUATION

5.2.1.2 Mobile Devices - Environmental Monitoring

Besides stationary sensors, mobile sensors and devices capture spatial measure-
ments at different point in time while moving in space. Mobile positioning technologies
such as GNSS ensure that the spatial reference of the devices is updated with a
specific accuracy and frequency. Moving sensors gather spatially distributed data
and, therefore, create opportunities for extended spatial analysis, but also raise new
challenges and problems. The generation and gathering of real-time mobile geo data
is additionally driven by new paradigms such as the mobile crowd sourcing/sensing
idea (Chatzimilioudis et al., 2012). This development shows that a protocol for the
Geospatial IoT must be also prepared for mobile sensing scenarios.

The URBMOBI project (Klok et al., 2014) is chosen to derive such a typical scenario.
In the project, sensor units were mounted on the rooftop of buses from the local public
transportation service in the region of Aachen, Germany (short: ASEAG). Different
environmental parameters such as air temperature or humidity were measured while
each bus operated its specific bus line. This was accomplished in different measuring
campaigns in the life spans of the project (URBMOBI 1.0 2010-2011, URBMOBI 2.0
2013-2015). Besides the microcontroller board, the developed sensor unit consists
of various meteorological sensors, a GPS receiver, a micro-SD card for storing
data locally and wireless communication electronics. This setup allows measuring
temporally and spatially distributed environmental data at a low-cost level. The project
aimed at analyzing urban heat and thermal comfort in cities based on the collected
data.

URBMOBI allows for deriving use case scenarios for defining GeoEvents and Geo-
Subscriptions in a Geospatial IoT application with mobile devices. For instance, a
sensor unit mounted on a bus roof measures the air temperature every second while
driving from a place A to a place B. This scenario is depictured in Figure 5.1(b)
with the drive segment representing the measuring campaign. The measurements
for the traveled trajectory are averaged before the system sends a message with
the measured value to the server. Thus, the temporal and the spatial components
change during the measurement processes, both should be modeled with appropriate
dimensionality in a GeoEvent in our proposed architecture.

5.2.2 SPATIOTEMPORAL MODELING

The scenarios described above demonstrate a distinction between stationary and
non-stationary, respectively moving or mobile objects equipped with sensors. How-
ever, in both scenarios the most important spatial property represents the location
of the deployed sensors. In the following the message types for GeoEvents and
GeoSubscriptions are constructed for both scenarios.

5. GEOMQTT EVALUATION 167

MODELING GEOEVENTS AND GEOSUBSCRIPTIONS IN EARLYDIKE

In the EarlyDike use case, stationary dikes on the German coastline are equipped
with intelligent geotextiles, which are embroidered with carbon fibers in different
heights parallel to the dike’s summit. Two carbon fibers form an oblong sensor to
detect soil moisture and deformations in the dike structure. The measuring process
is performed by a sensor node e.g. every two minutes to monitor the inner structure
of the dike.

From this scenario, we are able to construct an appropriate GeoEvent with the three
properties: timestamp, geometry and topic name. The topic name can be modeled
as e.g.

dike/untjehoern/geotextile/sensor/1/voltage (5.1)

It consists of several hierarchies identifying the dike’s section. untjehoern is the
name of the dike, while the consecutive hierarchies describe which sensor performed
the measurement (.../geotextile/sensor/1/...). The last topic part gives the
unit of the measured and transferred value (.../voltage). The sensor measures
the voltage, which drops between the two carbon fibers, to detect the moisture level.

For the temporal part, a timestamp identifies the temporal location of the mea-
surement. Since it describes one single point in time, the GeoEvent embodies a
Geospatial State (or open geospatial process) of a continuant, more precisely the
specific dike section. This point in time can be e.g. given by a timestamp in ISO8601
such as

2017-08-07T09:32:00Z (5.2)

The spatial component of the GeoEvent in EarlyDike describes the location of the
oblong sensor. By modeling this property as a linestring with tuples of coordinates,
the sensor can be described by its location, shape and extent in the real-world:

1 LINESTRING (8.63726521337415 54.48982784467354, 8.638482143512755
54.489966406025964, 8.638482143512755 54.489966406025964)

Listing 5.1: Geometry of one moisture sensor in the EarlyDike scenario

The stated examples of meta information for the GeoEvent in the EarlyDike scenario
are used in Section 5.2.3 to evaluate and compare the message size in GeoMQTT
and other encoding formats. The payload of the GeoEvent is a voltage value, for
instance 3.48V .

168 5. GEOMQTT EVALUATION

A suitable GeoSubscription for clients to receive the published GeoEvents can be
modeled in multiple ways. Clients may, for instance, use solely the topic filter to
specify their interest in the measurements and leave the other filter in wildcard mode.
Hence, a client can directly subscribe to a specific sensor or use wildcards to receive
multiple GeoEvents. In the scenario, reasonable topic filters might be the following.

dike/untjehoern/# (5.3)

dike/untjehoern/geotextile/# (5.4)

dike/untjehoern/geotextile/sensor/+/voltage (5.5)

dike/untjehoern/geotextile/sensor/1/voltage (5.6)

While in topic filter 5.3 all GeoEvents related to or published by the dike’s section
of Untjehörn are received by interested clients, topic filter 5.4 is solely applied to
GeoEvents specific to the geotextile built into the dike. Topic filters 5.5 and 5.6 look
similar, but filter 5.5 applies a wildcard to the sensor id so that GeoEvents emitted
by every oblong moisture sensor mounted to the geotextile of the dike section of
Untjehörn are received.

The temporal and the spatial filter offer different filtering compositions described in
Section 4.3.2 or can be both turned off. Reasonable temporal filters can be e.g. the
following:

Equals; 2017-08-07T08:00:00Z (5.7)

Encloses; 2017-08-07T08:00:00Z/2017-09-23T11:00:00Z (5.8)

Encloses; (0/30 0/24 0/12 ? * * *)/28800 (5.9)

Temporal filter 5.7 can be used to subscribe to a single point in time with the Equals
relationship. The filters in 5.8 and 5.9 define a time interval, respectively a repeating
time interval with the Encloses relation. The repeating time interval in 5.9 utilizes
a cron expression, which gives the instants in time every twelve hours, 24 minutes
and 30 seconds, and a duration of 28800 seconds (or eight hours). This describes a
half tidal cycle, if the subscriber is solely interested in the state of the dike during the
flooding phase.

Suitable spatial filters might be for instance given in Listing 5.2, here the geometries
are encoded in WKT. The first spatial filter specifies a Polygon that describes the
dike section of Untjehörn, while the polygon in the second filter (line 2) characterizes
the bounding box of the island Pellworm. Both filters use a Covers relationship, so
that for GeoEvents, whose geometries are inside the specified polygons, the spatial
filter function returns "true" as a result.

5. GEOMQTT EVALUATION 169

1 Covers; POLYGON ((8.63837 54.49042, 8.63719 54.49032, 8.63573 54.49021, 8.63578
54.48964, 8.63722 54.48973, 8.638512 54.48988, 8.63984 54.49008, 8.63969
54.49057, 8.63969 54.49057, 8.63837 54.49042))

2 Covers; BBOX(8.587638 54.557351, 8.708814 54.489124)

Listing 5.2: Spatial filters for the EarlyDike scenario

For the evaluation of the GeoSubscription message size in Section 5.2.4, we use the
following composition of filters: topic filter 5.5, temporal filter 5.8 and spatial filter in
line 1 of Listing 5.2.

MODELING GEOEVENTS AND GEOSUBSCRIPTIONS IN URBMOBI

In the URBMOBI use case, moving buses are equipped with sensors to monitor the
environment. This includes sensors to measure the temperature, the humidity and
the solar radiation. Additionally a GPS receiver determines the position of the bus
during the monitoring process. Like in the EarlyDike scenario, we can construct a
typical GeoEvent. We model the topic name in the following way:

bus/line/66/temperature/celsius (5.10)

, where the first three hierarchy levels define the bus line (bus/line/66/..), followed
by the observed property (here ../temperature/..) and the used unit as the
ultimate level. The temporal part is modeled as a time interval since a measurement
campaign consists of a trajectory, which the bus travels for ten seconds (see time
interval 5.11). Depending on the sensor’s sampling rate, the measurements are
averaged.

2016-08-17T16:41:10Z/2016-08-17T16:41:19Z (5.11)

The spatial part describes the trajectory, the bus traveled during the measuring
campaign. Thus, it is a line, whose vertices represent the measured GPS positions
of the bus. An example is given in Listing 5.3.

1 LINESTRING (6.1597 50.87225, 6.159633333 50.87216667, 6.159533333 50.8721, 6.15945
50.87203333, 6.15935 50.87195, 6.159266667 50.87186667, 6.1592 50.87178333,

6.159133333 50.8717, 6.15905 50.87161667, 6.158983333 50.87153333)

Listing 5.3: Geometry of a trajectory of a bus

The stated examples of meta information for the GeoEvent in the URBMOBI scenario
are used in Section 5.2.3 to evaluate and compare the message size in GeoMQTT

170 5. GEOMQTT EVALUATION

and other encoding formats. The payload of the GeoEvent is an averaged tempera-
ture value measured in degree Celsius, for instance 21.48°C.

Similarly to the EarlyDike scenario, different filters can be constructed to specify a
GeoSubscription. We can imagine the following topic filter depending on the sub-
scriber’s interests. Using topic filter 5.12, a client may subscribe to every GeoEvent
published by buses. Further, while topic filter 5.13 describes all temperature measure-
ments in degree Celsius published by every bus line, topic filter 5.14 omits wildcards
and can be used to receive the specific GeoEvents annotated by the same topic
name. The latter one is chosen for the message size evaluation of GeoSubscriptions
in Section 5.2.4.

bus/# (5.12)

bus/line/+/temperature/celsius (5.13)

bus/line/66/temperature/celsius (5.14)

Also different temporal filters can be conceived in the scenario. In the evaluation of
the message sizes later, we use the temporal filter in 5.15. It evaluates to true if the
measurement is contained in the given time interval. At this, it does not matter if
the GeoEvent is a geospatial event with a time interval like in the URBMOBI case,
or a geospatial state with a timestamp. For more information, see the temporal
relationships between intervals and points in time in Section 3.3.4.

Contains; 2015-09-01T11:00:05+02:00/2016-09-01T11:00:06+02:00 (5.15)

The spatial filter can be multifaceted depending on the use case and interests of the
subscribers. For instance line 1 in Listing 5.4 uses a Contains relationship and a
polygon that describes a road segment. For every GeoEvent, which is contained by
the polygon, the filter is evaluated to true. This first example is used as well in the
comparative analysis of the formats in the next section. The second example (line 2
in Listing 5.4) exemplifies a spatial filter with an Intersects relation. The geometry
describes a polygon created by a 1 km buffer around the city center of Aachen
(historic market square). Here a EWKT format was used since the coordinates are
given in a CRS with metric units. The idea behind this filter in the URBMOBI scenario
is to monitor and receive GeoEvents published by buses, which are in close proximity
to the center of the city.

5. GEOMQTT EVALUATION 171

1 Contains; POLYGON ((6.158429038058124 50.871240749670065,6.159239664227631
50.872029079445475, ... ,6.158429038058124 50.871240749670065))

2 Intersects; SRID=31466;BUFFER(POINT (2505976.633777643088251
5626672.894559904932976), 1000)

Listing 5.4: Spatial filters for the URBMOBI scenario

For the constructed scenarios and their use cases, the expressiveness of Geo-
Events and GeoSubscriptions can be assessed. Both, the GeoEvent for expressing
geospatial events and states and the GeoSubscription messages are sufficient for
spatiotemporal modeling of the real-world phenomena and specification of interest
in them. Thus, it can be used to implement an event-driven Geospatial IoT like
proposed in Chapter 3 from a modeling point of view.

5.2.3 GEOEVENT ENCODING COMPARISON

The spatiotemporal modeling evaluation of the introduced messages in GeoMQTT
assessed the requirement for expressiveness of real-world geospatial events and
states as well as the capabilities of defining GeoSubscriptions. Following this, the
second evaluation objective call for reasonable size of the encoded messages. Rela-
tively small encodings empower and encourage small resource-constrained devices
to participate in a Geospatial IoT. Thus, in this section the sizes of the encoded
GeoEvents in GeoMQTT are analyzed and compared to encoded GeoEvents in
similar formats. Considering this, comparable formats must be identified first. The
following list covers candidates to encode GeoEvents and assess their applicability.

1. Event Pattern Markup Language (EML) can be used to describe event patterns
for event processing and analysis based on an XML format. This includes a
data type for EML event objects, which can be used to encode spatiotemporal
events with different properties (Everding & Echterhoff, 2008).

2. Observations and Measurements (O&M) 2.0 is a conceptual schema providing
models for the exchange of information describing observation acts. Observa-
tions may have data types including primitive types but also complex ones such
as time, location and geometry (Cox, 2013). There are implementations in XML
and JSON. The encodings are associated with the SWE standards. Especially,
the JSON encoding is used in the SensorThings API.

3. Common Alerting Protocol (CAP) is a digital message format based on XML for
all types of alerts and notifications. Temporal information can be defined with
timestamps, a time interval with an effective timestamp and a point of expiry.
The encoding provides an area element, which can be set to a textual and

172 5. GEOMQTT EVALUATION

coded description such as postal codes or, preferably, described by a geospatial
shape (Westfall, 2010). However, the latter one only offers polygons and circles
and, thus, is not suitable for the GeoEvents modeled in our scenarios.

4. Moving Feature Access (MF) is an OGC standard that specifies encoding
representations of movement of geographic features with rigid bodies. The
features are described by using space-time coordinates. Several encodings
of the model exist: Comma Separated Values (CSV) (Asahara et al., 2015a),
XML (Asahara et al., 2015b) and JSON (Kim & Ogawa, 2017). The MF JSON
encoding applies to representations and formats of GeoJSON, but adds new
terms to specify dynamic attributes of moving features. The encoding standard
can be used to encode the measurement campaigns in the URBMOBI scenario.

Therefore, for our scenarios we encode the GeoEvents in EML, O&M 2.0 and,
additionally, in MF in the URBMOBI case. While EML is an XML derivative, O&M 2.0
can be implemented in XML and in JSON. The MF encoding is solely performed in
JSON. In addition, both - XML and JSON encodings - can be compressed by the EXI
mechanism. Efficient XML Interchange (EXI) and EXI4JSON are binary encodings
of XML respectively JSON developed by the W3C’s Efficient Extensible Interchange
Working Group (Kamiya, 2018). They reduce the verbosity of the documents and the
cost of parsing significantly. For the encoding in GeoMQTT’s GEOPUBLISH message,
we use the supported geometry encoding formats also including EXI if applicable (e.g.
in GML). ISO8601 timestamps or time intervals are used to encode the temporal
component in each GEOPUBLISH message.

MESSAGE SIZES IN THE EARLYDIKE SCENARIO

Figure 5.2 shows the resulting sizes of the messages in the EarlyDike scenario. It
becomes clear that the GEOPUBLISH encodings of the GeoEvent are smaller in com-
parison to the other chosen formats. Encoded in an EML document, the GeoEvent
constructed in the last section has a size of 1750 B, it can be reduced by the EXI
mechanism to 662 B without information loss. Similarly, the XML document of the
O&M 2.0 version has the largest size with 1803 B, which can be reduced to 967 B in
the EXI case, respectively 724 B in the JSONEXI format. When using GeoMQTT’s
GEOPUBLISH, the largest message is obtained encoding the geometry in GML (322
B). While the smallest GEOPUBLISH message using a lossless geometry encoding
is the WKT format with 196 bytes, it can be even downsized by applying Geobuf
encoding. However, due to the encoding with 6 digits after decimal point, this leads to
precision loss. In comparing these encoding formats, the reader should bear in mind,
that EML and O&M 2.0 are encoding standards for documents. For exchanging them
between entities, a suitable transfer protocol such as HTTP is still needed, while in
GeoMQTT’s GEOPUBLISH the transfer protocol is already included.

5. GEOMQTT EVALUATION 173

X
M

L

X
M

L E
X

I

X
M

L

X
M

L E
X

I

JS
O

N

JS
O

N
E

X
I

W
K

T

E
W

K
T

G
M

L

G
M

L E
X

I

G
eo

JS
O

N

G
eo

JS
O

N
E

X
I

G
eo

bu
f0

500

1,000

1,500

1750

662

1803

967

1304

724

196 206
322 263 213 181 96

Encodings

B
yt

es

EML O&M 2.0 GEOPUBLISH

Source: Author’s illustration

Figure 5.2: Encoding sizes of a GeoEvent in the EarlyDike scenario

MESSAGE SIZES IN THE URBMOBI SCENARIO

In the URBMOBI scenario, similar messages can be constructed. Additionally to
EML and O&M 2.0, the message size of MF with a JSON encoding is investigated.
The resulting message sizes are depictured in Figure 5.3. Here again, the encodings
of GeoMQTT’s GEOPUBLISH outperform the documents of EML, O&M 2.0 and MF in
terms of small message size. With 1900 B the plain EML document has the largest
size, with EXI it can be reduced to 778 B. O&M 2.0 has also quite large sizes with the
smallest at 621 B when using JSONEXI. The MF versions have comparable sizes to
the different versions of EML and O&M 2.0. Again the smallest lossless GEOPUBLISH
message is obtained by WKT encoding with 297 B. Geobuf, however, decreases this
size to 125 B by reducing the resolution to 6 digits after decimal point.

174 5. GEOMQTT EVALUATION

X
M

L
X

M
L E

X
I

X
M

L
X

M
L E

X
I

JS
O

N
JS

O
N

E
X

I

JS
O

N
JS

O
N

E
X

I

W
K

T

E
W

K
T

G
M

L
G

M
L E

X
I

G
eo

JS
O

N
G

eo
JS

O
N

E
X

I

G
eo

bu
f0

500

1,000

1,500

2,000 1900

778

1895

1039

1377

739

1223

621

297307
416358332251

125

Encodings

B
yt

es

EML O&M 2.0 MF GEOPUBLISH

Source: Author’s illustration

Figure 5.3: Encoding sizes of a GeoEvent in the URBMOBI scenario

MESSAGE SIZES IN GEOMQTT-SN FOR BOTH SCENARIOS

Finally, we analyze several versions and configurations of GeoMQTT-SN’s GEOPUBLISH
regarding the size of the sample message in the EarlyDike and URBMOBI scenario.
As described in Section 4.5, the GEOPUBLISH message of GeoMQTT-SN, which is
sent from sensor nodes in a WSN to the gateway, uses mechanisms to reduce the
message size. Subsequently, the gateway translates these reduced-size packets to
GEOPUBLISH messages in GeoMQTT. This is achieved by e.g. letting the gateway
append the specification of the geometry or the timestamp. In the EarlyDike use
case the geometry can easily be added by the gateway since the position of the
sensor is stationary. Either the sensor node registers the geometry in advance with a
GEOMREGISTER message or it is already hard coded into the gateway’s configuration.
In its GEOPUBLISH message, the sensor node indicates solely the corresponding
GeomID with two bytes. The resulting message sizes are plotted in the left chart
of Figure 5.4. By entrusting the completion of the message to the gateway, the
packet size can be reduced to 14 B, if both - geometry and timestamp - are omitted
(see ED.1). If the timestamp is added to the message (ED.2), the size increases
by four bytes. Finally, if the GeoMQTT-SN client is also in charge of defining the

5. GEOMQTT EVALUATION 175

geometry, the size adds up to 142 B when the WKT encoding is used. In the URB-
MOBI scenario, the bus is a moving object and, thus, the geometry (here trajectory)
changes for each GeoEvent. Therefore, the geometry as well as the time interval
are most likely included in the packet. In the right chart of Figure 5.4, this case
is shown in URB.2. For the previously defined sample GeoEvent, this leads to a
GEOPUBLISH message in GeoMQTT-SN of 239 B, which is not significantly smaller
than the same message in GeoMQTT. However, we can also think about a scenario,
in which a bus is equipped with a Personal Area Network (PAN) of multiple sensor
nodes and a gateway to connect to the Internet. The sensor node is responsible for
the temperature measurement and the forwarding to the gateway, but the gateway
determines the positions and the trajectory. Then, the packet size can be decreased
to 21 B because the gateway adds the geometry of the message.

ED.1 ED.2 ED.3
0

100

200

14 18

142

Encodings

B
yt

es

URB.1 URB.2
0

100

200

21

239

Encodings

B
yt

es

ED.1: GeomID & autofill timestamp
ED.2: GeomID & timestamp
ED.3: WKT & timestamp
URB.1: Autofill geometry & time interval
URB.2: WKT & time interval

Source: Author’s illustration

Figure 5.4: GeoMQTT-SN encoding sizes of a GeoEvent in the EarlyDike
& URBMOBI scenarios

This evaluation shows that also small resource-constrained devices in a sensor
network can participate in an architecture based-on GeoMQTT. The message sizes
can be reduced to a very small size without losing the expressiveness of a GeoEvent.
However, it should be mentioned that the dominating factor in terms of packet size

176 5. GEOMQTT EVALUATION

is the geometry encoding. If it is not known by the gateway or changes frequently,
it must possibly be included in the message, which leads to a significantly larger
packet, or it must be registered by the GeoMQTT-SN client in advance resulting in a
larger number of messages in the network.

5.2.4 GEOSUBSCRIPTION ENCODING COMPARISON

In addition to the comparison of GeoEvents in different formats, the sizes for encoding
GeoSubscriptions are evaluated. The GeoSubscriptions that are constructed in
Section 5.2.2 for the two scenarios are the basis for the evaluation. For GeoMQTT,
we include the scenario specific GeoSubscription in a GEOSUBSCRIBE packet type and
compare different geometry encodings. Timestamps or time intervals are specified
by their ISO8601 versions and are not changed for the different packets.

X
M

L

X
M

L E
X

I

W
K

T

E
W

K
T

G
M

L

G
M

L E
X

I

G
eo

JS
O

N

G
eo

JS
O

N
E

X
I

G
eo

bu
f0

500

1,000

1,500

2,000 2007

1057

463 473
681

558
344 260

133

Encodings

B
yt

es

OGC Filter Encoding 2.0 GEOSUBSCRIBE

Source: Author’s illustration

Figure 5.5: Encoding sizes of a GeoSubscription in the EarlyDike scenario

Furthermore, we identify the OGC Filter Encoding Standard (FES) 2.0 as an alterna-
tive candidate to encode GeoSubscriptions. The OGC standard describes an XML
and KVP encoding of a system neutral syntax for expressing projections, selection

5. GEOMQTT EVALUATION 177

and sorting clauses called a query expression (Vretanos, 2014). Several filters can
be specified such as comparison filters on data types like integers or strings, but
also temporal and spatial filters. The expressiveness of the standard is applicable
to define GeoSubscriptions. Thus, we use the XML version to model the stated
GeoSubscriptions and compare them to the GEOSUBSCRIBE packet type of GeoMQTT.
Like in the comparison for GeoEvents, the EXI versions of the encodings are also
included.

GEOSUBSCRIPTION SIZES IN THE EARLYDIKE SCENARIO

The encoding sizes of the GeoSubscription in the EarlyDike use case are depictured
in Figure 5.5. Clearly, the sizes of the GEOSUBSCRIBE packet outperform the FES 2.0
documents. Encoding the GeoSubscription in the XML version of the FES 2.0 results
in a quite large document of 2007 B, while the EXI version has still a size of 1057 B.
For the GEOSUBSCRIBE message, we obtain similar results compared to the GeoEvent
encoding. The smallest lossless size is provided by the WKT geometry encoding
with 463 B. The Geobuf version reduces the precision of the geometry’s coordinates
but also eventuates in half of the size (133 B).

X
M

L

X
M

L E
X

I

W
K

T

E
W

K
T

G
M

L

G
M

L E
X

I

G
eo

JS
O

N

G
eo

JS
O

N
E

X
I

G
eo

bu
f0

1,000

2,000

2706

1772

1137 1147
1354 1231

627
416

154

Encodings

B
yt

es

OGC Filter Encoding 2.0 GEOSUBSCRIBE

Source: Author’s illustration

Figure 5.6: Encoding sizes of a GeoSubscription in the URBMOBI scenario

178 5. GEOMQTT EVALUATION

GEOSUBSCRIPTION SIZES IN THE URBMOBI SCENARIO

Similar results are obtained by the URBMOBI use case (see Figure 5.6). Here, a
polygon with a high precision representing an area around a road segments is used
in the spatial filter. Unsurprisingly, the FES 2.0 document has a large size with 2706 B
as well as the EXI version with 1772 B. The compression of the Geobuf encoding
including its precision loss reduces the size of a GEOSUBSCRIBE message to 154 B.
Still, WKT provides the smallest lossless encoding of a GEOSUBSCRIBE packet with
1137 B.

5.3 BROKER PERFORMANCE TESTING & SCALING

After evaluating the expressiveness and the sizes of the introduced message types
in GeoMQTT, we proceed with the other two objectives of this evaluation raised
in Section 5.1. It covers the efficiency and lightweight of the implemented broker
and its mechanisms as well as the scalability of the system. So, the focus of this
evaluation step is on the performance of the broker during message distribution. This
involves the investigation of the broker during heavy message load using multiple test
scenarios. For instance, we like to assess the functional stability of the broker while
varying the throughput of messages per second, or the behavior when changing the
number of subscribers and the number of brokers.

5.3.1 TESTBED SPECIFICATIONS

Before describing the details of the performance test and the different parameter
variation, this section introduces the specification of the testbeds which are used for
the tests. Basically, two testbeds are set up, to meet the objectives and evaluate the
efficiency and scalability of the implemented GeoMQTT broker. Both are depictured
in Figure 5.7.

The main difference between the two testbeds is the number of brokers involved.
While in testbed 1 (see Figure 5.7 (a)) a single GeoMQTT instance is deployed, in
testbed 2 (see Figure 5.7 (b)) a GeoMQTT broker cluster consisting of two brokers
is installed to distribute the load of the messages utilizing the hazelcast framework.
Thus, the first testbed aims at investigating the efficiency of the broker implementa-
tion and testbed 2 is employed to assess the scalability. However in both testbeds,
GeoMQTT clients are scalable deployed on two machines using the JMeter frame-
work. Clients and server as well as the applied technologies are defined in the
following.

5. GEOMQTT EVALUATION 179

Broker

Slaves

Master

Slave 2Slave 1

Control

PU
BL

IS
H

(a) Testbed 1 with one broker

Broker

Slaves

Master

Slave 2Slave 1

Control

CO
N
N
EC

T

Broker

Load balancer

PUBLISH
over Hazelcast

(b) Testbed 2 with two brokers
Source: Author’s illustration

Figure 5.7: Geospatial IoT scenarios

SETUP OF THE CLIENTS

The clients in our performance tests are distributed deployed on two machines and
use the GeoMQTT Java implementation mentioned before. To plan, control and
execute tests on the testbeds, the Apache JMeter tool is used.

Apache JMeter2 is a Java application originally designed to load test functional
behavior and measure performance of Web applications but has been expanded to
other test functions as well. Heavy load on a server can be simulated to analyze
overall performance under different load types. A full featured testing GUI facilitates
the design, recording and debugging of test plans. However, a command-line mode is
also included to perform load test from any Java compatible Operating System (OS)
without the overhead of the GUI. Additionally, JMeter allows for distributed stress
testing, in which a master system running the JMeter GUI is configured that controls
the execution of test plans on registered slave machines. These slaves run a JMeter
server, which takes commands from the GUI and sends requests to the target
system(s). In both of our testbeds (see Figure 5.7) we make use of this distributed
testing feature. The advantage of this feature is the capability to replicate a test
across many computers and simulate a larger load on the server.

JMeter supports neither MQTT nor GeoMQTT innately. But with its plug-in system, a
mechanism to integrate extensions and, ultimately, support also other protocols is

2https://jmeter.apache.org/

180 5. GEOMQTT EVALUATION

provided by the software. In that way, MQTT can be supported by multiple available
plug-ins. Based on the MQTT plug-in written by the GitHub user "winglet" 3, we
developed a plug-in for GeoMQTT. This involved replacing the used MQTT client
with our GeoMQTT Java client and implementing appropriate advanced functionalities
in the GUI. The latter one enables the user to specify spatiotemporal components
of messages in the publisher sampler, respectively spatiotemporal filters in the
subscriber sampler of a test plan. This way, the plug-in is prepared to publish and
subscribe to GeoEvents expressed by GEOPUBLISH messages in GeoMQTT, so that
we can perform the desired load test on the broker.

Table 5.1: Hardware specifications in testbeds

Master Slave GeoMQTT
broker

Processor Intel i7-4770 Intel Xeon
E5-2603 v3

Intel Xeon
E5-2603 v3

CPUs 8 1 1

Clock Speed (GHz) 3.4 1.6 1.6

RAM (GB) 16 2 2

Ethernet (Mb/s) 1000 1000 1000

Source: Author’s illustration

The JMeter master system runs with Linux Mint 18.2 ("Sonya") and has the hardware
specifications given in Table 5.1. The two slave systems have equal hardware
specifications. The OS Debian 8.10 ("jessie") is installed. Both, master and slave
systems, use Apache JMeter Version 5.0 (r1840935). The virtual machines for the
JMeter slaves, the GeoMQTT brokers as well as the HAProxy in testbed 2 run on the
same physical server machine, so the network speed is negligible.

SETUP OF THE BROKER

The GeoMQTT broker is compiled as a runnable jar and deployed as a Docker4

container on the machines. In testbed 1, the Docker container is deployed on a
single machine running Debian 8 ("jessie") with the hardware specifications given in

3https://github.com/zerogvt/mqttws-jmeter
4https://www.docker.com/get-started

5. GEOMQTT EVALUATION 181

Table 5.1. The same specifications hold for the broker machines in testbed 2. Here
the load is additionally balanced by a HAProxy5. HAProxy is a TCP load balancer
and proxy server, which spreads incoming requests across multiple endpoints. It
is often used when too many concurrent connections over-saturate the capability
of a single server. In our testbed, it is deployed on a dedicated machine and
configured with the two given GeoMQTT broker instances as endpoints. Instead
of connecting directly to a broker machine, GeoMQTT clients connect to the proxy
which distributes the incoming CONNECT requests to the GeoMQTT brokers in a round-
robin fashion. Subsequently, the TCP connection is established between client and
assigned broker. The HAProxy machine has the same hardware specifications and
OS like the GeoMQTT broker machines.

This setup allows distributing the load on several instances of the GeoMQTT broker.
However, without a communication mechanism between the brokers in the cluster,
they might not receive all events and, thus, cannot notify every subscriber. Like in
testbed 2 with two brokers (see Figure 5.7)(b), if a subscriber is connected to the
left broker, incoming events at the right broker, which match the subscriptions of the
subscriber, are not known and cannot be forwarded to the subscribers. Therefore,
the events need to be exchanged between all brokers in the broker cluster. For this
purpose, Hazelcast6 is applied in testbed 2. Hazelcast is an open-source in-memory
data grid written in Java. Data is distributed in the main memory across multiple
machines. The architecture allows for horizontal scaling by adding new instances
of the GeoMQTT broker. Also, it prevents the system to fail in case of a server error
since the data is distributed.

The assumption holds that by scaling the broker horizontally and with the help of
hazelcast and HAProxy, the load, the throughput of messages and the number of
subscribers can be increased. Therefore, the GeoMQTT broker implements also the
Hazelcast interface to be able to establish a broker cluster.

5.3.2 PERFORMANCE TEST PLANS

We aim for different performance tests to assess the efficiency and the scalability
of the broker. These tests are mainly performed on GeoMQTT messages, but the
broker’s capabilities of processing ordinary MQTT subscriptions and events are also
evaluated and serve as a reference for the advanced filtering mechanisms. We
expect that both introduced filters in GeoMQTT, temporal as well as spatial filter,
significantly increase the processing load in the broker and, thus, decrease the
possible message throughput. Also additional features like coordinate transformation
might affect throughput and latency. However, we also like to assess if the horizontal

5http://www.haproxy.org/
6https://hazelcast.org/

182 5. GEOMQTT EVALUATION

scaling of the broker in testbed 2 can counterbalance this decrease in message
throughput. For these purposes, we construct the following test plans:

1. PubQoS1: MQTT PUBLISH message with QoS 1, no subscribers (reference)

2. GeoPubQoS1: GeoMQTT GEOPUBLISH message with QoS 1, no geo sub-
scribers

3. PubSub: MQTT PUBLISH message with QoS 1, single subscriber (reference)

4. GeoPubGeoSub: GeoMQTT GEOPUBLISH message with QoS 1, single geo
subscriber (no transformation of coordinates)

5. GeoPubGeoSubmultisub: GeoMQTT GEOPUBLISH message with QoS 1, multiple
geo subscribers (no transformation of coordinates)

6. GeoPubGeoSubtransform: GeoMQTT GEOPUBLISH message with QoS 1, single
geo subscriber (transformation of coordinates)

7. GeoPubGeoSubmultisub,transform: GeoMQTT GEOPUBLISH message with QoS 1,
multiple geo subscriber (transformation of coordinates)

8. GeoPubGeoSubmultisub,transform,scale: GeoMQTT GEOPUBLISH message with QoS
1, multiple geo subscriber (transformation of coordinates); horizontal scaling of
broker

The first seven test plans are run and evaluated on testbed 1 to assess the capabilities
of a single GeoMQTT broker instance. To determine the deviations to MQTT, test
plan 1 and 3 are conducted. The last test plan assesses the scalability of the broker
and is therefore driven on testbed 2.

METRICS AND PARAMETERS

For all test plans, the message throughput is varied, firstly by modifying the throttle
parameter in the clients, which indicates the time lag between two sent messages.
Empirically tested, this parameter should not (and is not) decreased below 50 ms.
So, a single client can increase the message throughput to 20 msg/s. Secondly, to
raise the message throughput further, the number of clients can be increased using
distributed clients with the JMeter framework. Every PUBLISH message is send with
QoS level 1 and answered by the broker with a PUBACK to ensure the receipt of the
message (see Section 4.2.3.1).

In test plans involving subscribers it holds that every subscriber is subscribed to all
messages send by every publisher. In the best case, this means that each subscriber
receives every PUBLISH message ever send during the test. The subscribers are

5. GEOMQTT EVALUATION 183

also running on the JMeter slave machines in parallel to the clients, which send the
events. The subscriptions itself are annotated with QoS level 0.

Every test plan is executed for roughly two minutes. This way we can measure the
performance under steady load. For measuring the efficiency of the broker, we will
observe the following metrics during each test plan if applicable.

• Publisher latency : Difference in time between sending PUBLISH message and
receiving the ACK for the message.

• Subscriber latency : Difference in time between sending PUBLISH message by a
client and reception of the message at the subscriber (aka. round-trip latency).

• Error rate: Portion of messages which are not received by the subscriber but
received by the broker. (downstream message loss)

Timestamps are integrated into the messages, so that the latencies can be computed
at arrival time. The latencies are then averages for each test. Since the publishers
and subscribers might run on different machines, the latencies are only considered,
if the message is sent and received by the same machine. Otherwise deviations
in the clocks of the machines would result in incorrect latencies due to issues in
time synchronization in millisecond. Further during some tests, the CPU usage is
measured. This way, we can determine why and when downstream message loss
occurs.

TEST MESSAGES

The GeoEvent that are encoded in GEOPUBLISH messages in GeoMQTT include a
topic name, a time stamp, a geometry and a payload. The topic name consists of
three hierarchy levels which are partly machine specific (see Topic name 5.16). The
<machineName> and <threadNumber> are replaced by the clients with the machine
and thread specific name. Including this, we can compute the latencies correctly like
described before. The topic name in test plans using MQTT messages are likewise.

<machineName>/<threadNumber>/temperature (5.16)

The temporal component is set to the current machine’s time (time of sending) with
millisecond resolution. The geometry is set to one of the points specified in Listing 5.5.
Usually the point in line 1 is used, however for test involving coordinate transformation,
we use the geometry in line 2.

184 5. GEOMQTT EVALUATION

1 POINT (0.0 0.0)
2 POINT (6.067672129371917 50.779453271121561)

Listing 5.5: Geometries in the performance tests

The payload of each GeoMQTT GEOPUBLISH message is set to the string "7°C". In
MQTT messages, the payload is instead filled with the current time of the machine
with millisecond resolution, since otherwise it would not be included in the message
and determining the different latencies would not be possible.

TEST SUBSCRIPTIONS

For the subscriptions and the GeoSubscriptions we use in the test plans involving
subscribers, topic filter 5.17 is applied. With the first two hierarchy levels set to the
wildcard "+", we ensured that every message can be received by every subscriber.

+/+/temperature (5.17)

While the temporal filter is turned off by leaving it blank and, thus, is evaluated to
"true" for every message, the spatial filter is set to one of the following given in
Listing 5.6. The filter in line 1 is normally used, but in test plans involving coordinate
transformation the filter in line 2 is applied.

1 EQUALS; POINT(0.0 0.0)
2 COVERS; SRID=5652;POLYGON ((32293268.2479151 5629435.74512573,32293286.7656027

5629439.03272728, ... ,32293268.2479151 5629435.74512573))

Listing 5.6: Spatial filters for the test plans

The geometry of the second spatial filter describes the building of the civil engineer-
ing faculty at RWTH Aachen University in CRS "ETRS89 / UTM zone 32N". It is
constructed in a way that the geometries of the GeoEvents used in the corresponding
test plans evaluates to true for each subscriber. The geometries of the GeoEvents
are then first transformed to the GeoSubscription’s CRS before sending them to the
subscriber.

5.3.3 PERFORMANCE TEST RESULTS

The results of the test plans constructed in the last section are shown and analyzed
in the following parts. For simplified comparison, the test plans are grouped if they
match thematically.

5. GEOMQTT EVALUATION 185

5.3.3.1 PubQoS1 & GeoPubQoS1

For the PubQoS1 and the GeoPubQoS1 test plans, testbed 1 is used. The aim of
the test plans is to measure the publisher latency if the throughput in messages per
second (msg/s) is increased on a single broker. The messages are assigned a QoS
level 1, so that the broker must acknowledge their receipt. In general, we expect a
higher latency at a higher throughput. First, the test plan is performed by using MQTT
PUBLISH messages and, afterwards, GeoMQTT GEOPUBLISH packets are sent. Since
the broker does not have to check for and validate against subscriptions, the test
plan solely focuses on measuring load while parsing and acknowledging messages.
Figure 5.8 shows the result for both test plans.

32 64 128 256 512

10

100

1,000

10,000

Throughput in msg/s

La
te

nc
y

in
m

s

PUBLISH
GEOPUBLISH

Source: Author’s illustration

Figure 5.8: Latency of (GEO)PUBLISH message with QoS 1

The graph illustrates the publisher latencies for PUBLISH and GEOPUBLISH messages
on a single broker in testbed 1, while the throughput is modified. Clearly, the base
MQTT packet performs better than the GEOPUBLISH message in GeoMQTT. For a
lower throughput (e.g. 20-40 msg/s) the latencies range around 2.7 ms, respectively
3.7 ms for GeoMQTT and the broker is nowhere near an over-saturation. So basically,
from the difference between the two message types, we can conclude that the
parsing of the additional temporal and spatial information takes roughly an additional
millisecond for the specific message throughput. Subsequently, the results show
that the higher the message throughput, the more the latencies increase. With a

186 5. GEOMQTT EVALUATION

throughput of around 640 msg/s, the latency for GeoMQTT events rises to around
7.5 s, which is a non-acceptable state for the system. By contrast with 46.26 ms, the
latency using MQTT PUBLISH is still acceptable.

5.3.3.2 PubSub & GeoPubGeoSub

Whereas the first two test plans exclude the subscriptions of message, we want to
assess the latency of a single subscriber in the following. Additionally, the publisher la-
tencies are also recorded. Figure 5.9 shows the results for test plan PubSub, in which
a MQTT client subscribes to each message with the topic filter +/+/temperature.
The message throughput is stepwise increased from 20 msg/s to 360 msg/s. The
publisher latencies rise with increasing throughput to roughly 92 ms at 360 msg/s.
The subscriber latency (or round-trip latency) increases only slightly and is with
330 ms at 360 msg/s still acceptable. However, downstream message loss (0.04%)
occurs already at a 200 msg/s throughput. At 360 msg/s, 12.375% of the messages
are not received by the subscriber.

50 100 150 200 250 300 350

10

100

1,000

10,000

100,000

Throughput in msg/s

La
te

nc
y

in
m

s

0

0.2

0.4

0.6

0.8

1

E
rr

or
ra

te

Publisher latency
Subscriber latency

Error rate

Source: Author’s illustration

Figure 5.9: Round-trip latency using one subscriber in MQTT

Comparing these results to the version with GEOPUBLISH messages, the results
differ significantly. The graphs in Figure 5.10 illustrate the test plan results for the
GeoMQTT version. The latencies for publisher and subscriber are still acceptable
at a throughput of 280 msg/s with 164.7 respectively 394.92 ms, but skyrocket with

5. GEOMQTT EVALUATION 187

higher throughput to several seconds. Message loss also occurs already at 200
msg/s (0.585%) and significantly increases to 64.79% at 360 msg/s. When analyzing
the CPU usage during these load tests (see Figure 5.11), we can clearly perceive that
the higher throughput and the accompanied larger amount of filter evaluations lead to
a heavier utilization of the CPU of the GeoMQTT broker machine. With 20 msg/s this
usage is considered decent with around 10% and peaks at 22% during the test. If
the throughput increases tenfold (200 msg/s), the CPU usage averages around 73%,
but peak load can be at 100%. Even higher throughputs lead to higher incidences of
full CPU usage. Hence, a rise in the error rate is the logical consequence.

50 100 150 200 250 300 350

10

100

1,000

10,000

100,000

Throughput in msg/s

La
te

nc
y

in
m

s

0

0.2

0.4

0.6

0.8

1

E
rr

or
ra

te

Publisher latency
Subscriber latency

Error rate

Source: Author’s illustration

Figure 5.10: Round-trip latencies using one subscriber in GeoMQTT

188 5. GEOMQTT EVALUATION

0 10 20 30 40 50 60 70 80 90 1000

20

40

60

80

100

Elapsed Time in seconds

C
P

U
us

ag
e

in
%

20 msg/s 80 msg/s 160 msg/s
200 msg/s 240 msg/s 280 msg/s

Source: Author’s illustration

Figure 5.11: CPU usage of the broker at different throughput levels during
the GeoPubGeoSub test plan

5.3.3.3 GeoPubGeoSubmultisub

Based on the results of the previous test plans, we focus on the number of subscribers
in the next performance test. We modify the throughput of messages as well as
the number of subscribers. Each subscriber receives every published GEOPUBLISH
message. The filter evaluation is performed based on topic and spatial filter leaving
the temporal filter turned off. However, the spatial filtering mechanism still does not
involve coordinate transformation. For several parameter variations the results in
Figure 5.12 are shown.

For a throughput of 20 msg/s, the broker can handle up to 20 subscribers easily
at the same time. The subscriber latencies range from 240 to 272.87 ms and no
downstream message loss occurs. For 12 subscribers, similar results can be obtained
with a 40 msg/s throughput. However, using 16 subscribers and 40 msg/s, the
subscriber latency increases to 2.12 s and message loss occurs (7.87%). Setting the
throughput further to 80 msg/s, the broker reaches its limits already at 8 concurrent
subscribers leading to a subscriber latency of 7.05 s and a downstream message
loss of already 70.58%.

5. GEOMQTT EVALUATION 189

5 10 15 20

1,000

10,000

Number of subscribers

La
te

nc
y

in
m

s

20 msg/s
40 msg/s
80 msg/s

Source: Author’s illustration

Figure 5.12: Round-trip latencies for multiple subscribers and throughputs

5.3.3.4 GeoPubGeoSubtransform & GeoPubGeoSubmultisub,transform

In the following, we repeat the previously conducted test plans that include GeoSub-
scriptions, but also add the processing step of coordinate transformation for every
message the broker forwards it to the subscribers. First, the GeoPubGeoSub test
plan is rerun, which involve a single GeoSubscription made by a client. Again the
throughput is varied and the latencies as well as the CPU usage are recorded. The
results for the latencies are plotted in Figure 5.13.

The figure shows that a throughput of 160 msg/s is unproblematic: the publisher
latency is still low with 31.70 ms, the subscriber latency with 287.59 ms is as high
as in the test without coordinate transformation and message loss occurs scarcely -
the error rate is 0.03125%. However, if the throughput is increased to 200 msg/s or
even further, the measured latencies and error rates soar. The system is not capable
of processing and distributing the events any more. Compared to the performance
test without coordinate transformation, the capabilities in terms of processing at a
high throughput are reduced significantly. Also if we take a closer look at CPU load
during the test plans (see Figure 5.14), this becomes evident. A throughput level of
160 msg/s leads to a CPU usage of around 80% with peaks to 100%, but a load of
200 msg/s is not processable by the single GeoMQTT broker in testbed 1.

190 5. GEOMQTT EVALUATION

50 100 150 200 250

10

100

1,000

10,000

100,000

Throughput in msg/s

La
te

nc
y

in
m

s
Latency publisher

Latency subscriber

0

0.2

0.4

0.6

0.8

1

E
rr

or
ra

te

Publisher latency
Subscriber latency

Error rate

Source: Author’s illustration

Figure 5.13: Round-trip latency using one subscriber at different throughput
levels with coordinate transformation

0 10 20 30 40 50 60 70 80 90 100 1100

20

40

60

80

100

Elapsed time in seconds

C
P

U
us

ag
e

in
%

20 msg/s 40 msg/s 80 msg/s
120 msg/s 160 msg/s 200 msg/s

Source: Author’s illustration

Figure 5.14: CPU usage of the broker at different throughput levels with
single subscriber and coordinate transformation

5. GEOMQTT EVALUATION 191

When rerunning the GeoPubGeoSubmultisub test plans with coordinate transformation
and modifying the number of subscribers, the number of transformations can be
increased further. We measure the subscriber latencies illustrated in Figure 5.15
for several parameter variations. In comparison to the first test with multiple sub-
scribers, the subscriber latencies for 20 msg/s and 20 subscribers are clearly above
15 seconds and message loss occurs (error rate: 62.85%). Already 16 concurrent
subscribers lead to a subscriber latency of 1.714 s. However, if we reduce the
throughput to 10 msg/s, the test plan is handled smoothly. For throughputs of 40
or even 80 msg/s, only a small number of subscribers can be served in a reason-
able amount of time. Furthermore, the error rates are already quite high having
small amounts of subscribers. For instance, with a throughput of 80 msg/s and 4
subscribers, the downstream message loss is already at an error rate of 77.98%.

5 10 15 20

1,000

10,000

100,000

Number of subscribers

La
te

nc
y

in
m

s

10 msg/s 20 msg/s
40 msg/s 80 msg/s

Source: Author’s illustration

Figure 5.15: Round-trip latencies for multiple subscribers and coordinate
transformation

5.3.3.5 GeoPubGeoSubmultisub,transform,scale

To evaluate the scalability of the GeoMQTT broker, the test plan
GeoPubGeoSubmultisub,transform is also driven on testbed 2. In this testbed, two

192 5. GEOMQTT EVALUATION

GeoMQTT brokers form a broker cluster, in which PUBLISH and GEOPUBLISH mes-
sages are exchanged between each other using hazelcast. The connections of the
GeoMQTT clients are divided in a round-robin fashion by a HAProxy instance (see
Section 5.3.1). This setup might divide the processing load induced by the filtering
mechanisms to two brokers, if the subscribers are equally distributed among them.
In the following test plans, we can control this distribution process by first connecting
the subscribers to the cluster. Then after a time delay, the publishers also connect
to the broker cluster. With equally distributed subscribers, we expect a balanced
distribution of processing load and the best performance results we can obtain from
the testbed and for the tests. The previous results show that the bottle neck of the
broker is the processing of the GeoSubscriptions. We expect that the broker cluster
can improve the performance and, thus, provide a suitable scalability mechanism.

5 10 15 20

1,000

10,000

100,000

Number of subscribers

La
te

nc
y

in
m

s

10 msg/s 20 msg/s
40 msg/s 80 msg/s

Source: Author’s illustration

Figure 5.16: Round-trip latencies for multiple subscribers and coordinate
transformation in testbed 2

Similarly to the latter tests using a single broker instance, the throughput of messages
and the number of subscribers are varied in the GeoPubGeoSubmultisub,transform,scale
test plan. Again, each subscriber is subscribed to every message, so that in the
best case, it receives all messages. Also the GeoSubscriptions use a different CRS
than the GEOPUBLISH messages entailing a transformation of coordinates for every

5. GEOMQTT EVALUATION 193

message and every GeoSubscription. For the test plan and parameter variations we
collected the results plotted in Figure 5.16.

Compared to the same tests on a single GeoMQTT broker (see Figure 5.15), the
results of the broker cluster clearly prove the superiority in terms of performance.
While on a single broker the tests with 20 msg/s and 16, respectively 20 subscribers,
lead to high subscriber latencies and error rates, the same tests on the GeoMQTT
broker clusters operate smoothly with almost no impact in comparison to less sub-
scribers or a lower throughput (e.g. 10 msg/s). For a throughput of 40 msg/s, 12
subscribers are still trouble-free, but with 16 subscribers the latency increases and
downstream message loss occurs. The error rate is already at 19.736%. Similar
results are obtained for 80 msg/s and 8 subscribers, so that the capacity limit of the
broker cluster is reached.

Overall however like shown, the performance in terms of message throughput can be
improved by utilizing a GeoMQTT broker cluster. Thus, scalability of the protocol can
be ensured by appropriate mechanisms, here in form of a broker cluster and load
distribution.

5.4 DISCUSSION ON EVALUATION RESULTS

The evaluation objectives in Section 5.1 were raised to assess the properties of
GeoMQTT and its suitability regarding the requirements for a Geospatial IoT (see
Chapter 3). Especially, the focus has been on questions about expressiveness,
message size, efficiency and scalability. Here, we like to discuss the findings and
assess the capabilities of the GeoMQTT protocol and the implementation.

GeoEvents and GeoSubscriptions like defined in Chapter 3 should be representable
in the Geospatial IoT architecture. With the evaluation based on the scenarios
for stationary and mobile devices, we showed that at least in these use cases,
the expressiveness of the messages in GeoMQTT is granted. However, we can
think about other scenarios, in which for instance the expressiveness of the spatial
component in GeoMQTT in its current version is insufficient. E.g. in Geospatial IoT
applications, which involve the orientation of GeoEvents, the currently used geometry
representation is unable to cover these aspects. The same holds for the spatial filter
in GeoSubscriptions. A filter for things facing in a certain direction cannot be modeled
with the current version of the protocol.

The message size comparisons illustrate, that the lightweight of the introduced mes-
sages in GeoMQTT can be positively assessed. In comparison to other encoding
standards, the sizes for the modeled GeoEvents and GeoSubscriptions with its corre-
sponding packet types GEOPUBLISH and GEOSUBSCRIBE outperform their competitors.
Thereby, the encoding of the geometries in the spatial component determines mainly

194 5. GEOMQTT EVALUATION

the deviation in size. It should be mentioned that the comparison evaluates two
different types of encodings: in GeoMQTT the messages are packet encodings,
while the other standards such as EML feature documents encodings. For the latter
ones, embedding in an appropriate transfer protocol is still needed. Nevertheless,
the modeling in GeoMQTT is still smaller, so that we can argue for the lightweight of
the protocol.

Based on the performance tests we run on the GeoMQTT broker, the efficiency of
the proposed implementation could be evaluated. In comparison to plain MQTT and
its subscribing mechanism, the broker demands for more processing power when
the extended filtering mechanisms of GeoMQTT are applied. The latencies are in
general increasing with the GeoMQTT extension. Additionally depending on the
amount of GeoSubscriptions and messages, the feasible throughput of messages is
restrained. When applying coordinate transformations due to alternative CRSs in the
GeoSubscriptions, the performance of the GeoMQTT broker in terms of message
throughput is further restricted. Coordinate transformations to another CRS need
additional processing resources. The overall assessment of the efficiency is challeng-
ing, since it depends heavily on the application, particularly the number of publishers,
of subscribers and the frequency of GeoEvents send through the system. In the test
plans involving a single broker instance, a lower message throughput of 20 msg/s and
up to 12 subscribers with coordinate transformation yields in an acceptable latency.
But increasing message throughput and/or number of subscribers result in higher
latencies and message loss. Contrary, while decreasing the number of subscribers,
the message throughput can be incremented. With a single subscriber and coordi-
nate transformation, a message throughput of 160 msg/s can be achieved without
problems. Like said, the message throughput depends on the specific application
(e.g. sampling rate of sensors). For the scenarios introduced in Section 5.2, the
achieved efficiency with one broker instance is sufficient.

Equally important to the efficiency of the GeoMQTT broker is its scalability. If a
scalable solution can be applied, the performance capabilities of the broker can be
expanded. Therefore, we deployed a cluster with two GeoMQTT brokers in another
testbed applying load distribution. The results of the test plans we reran on the
cluster show that the performance in terms of feasible throughput can be increased
by replicating the broker instances. The limitation of the single broker instance in
testbed 1 can be overcome by scaling it horizontally. So our implemented GeoMQTT
extension meets the scalability requirement of a GeoEvent-based architecture for
a Geospatial IoT. However, further questions arise from this observation such as
the question about the scaling factor. Thus, further investigations and evaluations
involving a cluster with multiple brokers should be performed in future studies.

CHAPTER 6

GEOMQTT INFORMATION &
SERVICES

The third building block of IoT architectures consists of an information and a service
layer (see Section 2.5). In this chapter, we present the integration of the GeoMQTT
protocol in this layer for different types of software and services. With the integration
in a desktop GIS, we bridge the mechanisms of our Geospatial IoT architecture to
contemporary GIS technology (Section 6.1). Further, we describe a RESTful access
point to the architecture in Section 6.2, as well as bridge the GeoMQTT protocol
into the service-oriented Sensor Web architecture implemented by the OGC SWE
standards (Section 6.3). Finally, we introduce an extension of the WPS interface that
enables processes to receive and run stream processing algorithms on GeoEvents
published by e.g. GeoMQTT (see Section 6.4). Further, this extension is also used
to invoke processes on DSP systems.

6.1 GEOMQTT PLUG-IN FOR QGIS

Traditionally, desktop GISs are expert software systems to support capturing, manip-
ulating, analyzing, managing and visualizing spatial annotated or geographic data.
The evolution of GIS coincides with the development of computers and the Internet
technology as we have seen in the introduction of this thesis. The traditional archi-
tecture of desktop GIS software manage and analyze spatial data in a standalone
environment like a desktop computer, while service-oriented GIS relies on distributed
web services (Yue et al., 2014). Consequently, GIS is supposed to play also an
important role in the Geospatial IoT.

A literature review reveals conceivable reasons to interconnect IoT with GIS technolo-
gies. For instance, Gubbi et al. (2013) state that data collected within IoT is often
geo-related and sparsely distributed. They favor a framework based on Internet GIS
to cope with challenges of visualizing the data. According to Kamilaris & Ostermann
(2018), who conducted a review of IoT research projects and its relation to geospatial
analysis, the tools of desktop GIS offer large potential for understanding, modeling
and visualizing natural or artificial ecosystems while using IoT as a sensing infrastruc-
ture. Hence, we like to integrate the Geospatial IoT and desktop GISs to investigate
the interaction of the two technologies. As a proof-of-concept, we used the open
source QGIS software and its plug-in system to implement a GeoMQTT plug-in. With

196 6. GEOMQTT INFORMATION & SERVICES

its help, real-time data from corresponding clients can be received, visualized and
analyzed by the software.

6.1.1 QGIS AND ITS PLUG-IN SYSTEM

QGIS is a free and open source GIS software. It is composed of two programs: QGIS
Desktop and QGIS Browser. While the browser is used to manage and preview data,
QGIS Desktop is a traditional desktop GIS with the corresponding basic functionalities
to manage, display, analyze and style geo data. The volunteer-led development of
QGIS was started by Gary Sherman in 2002. In 2007 it was incubated with the Open
Source Geospatial Foundation (OSGeo). Version 1.0 was finally released in 2009
(Menke et al., 2015). At the time of writing, version 3.6 (Noosa) has been released
recently and can be downloaded from the project’s website1.

The QGIS Desktop GUI consists of a menu bar, toolbars, panels and a map display
(Menke et al., 2015) and, thus, is comparable to similar GIS software such as ESRI’s
ArcGIS or Intergraph’s Geomedia. Figure 6.1 shows a screenshot of the utilized LTR
version 2.18.x (Las Palmas). The main view is the map display, which shows the
styled data. Most capabilities of QGIS Desktop can be accessed by the menu bar
and the floating or docked toolbars. Likewise, floating or docked panels provide a
variety of functionalities. For instance, in the Layers panel, the user may access or
rearrange the different layers.

The set of basic functionalities can be enhanced using plug-ins. Because QGIS is
written in C++, this was originally the only language to develop plug-ins. However,
since version 0.9.x, QGIS supports scripting using Python. This includes a Python
console to run scripts based on objects and methods in the QGIS API, but also the
possibility to write applications and plug-ins in Python. Since the QGIS code depends
on Qt libraries, PyQt42 is used in the Python bindings. Employing Python, it became
much easier to develop and to distribute plug-ins. Additional information about the
plug-in system and a guide for developing plug-ins can be e.g. found in QGIS Project
(2018).

Since QGIS introduced Python support, many plug-ins with different functionalities
have been implemented or are still developed (e.g. Braden, 2015; Duarte et al., 2018).
A QGIS plug-in3 which integrates QGIS with MQTT is also available but is not under
active development and does not run under the current version.

1https://qgis.org
2https://pypi.org/project/PyQt4/
3https://github.com/nzfarmer1/telemetrylayer

https://qgis.org
https://pypi.org/project/PyQt4/
https://github.com/nzfarmer1/telemetrylayer

6. GEOMQTT INFORMATION & SERVICES 197

Menu Bar

Toolbars

Panels

Map Display

Source: Author’s illustration

Figure 6.1: QGIS Desktop Version 2.18.x LTR (Las Palmas)

6.1.2 GEOMQTT IN QGIS DESKTOP

Integrating Geospatial IoT data sources with a desktop GIS such as QGIS by using
the designated protocols is required to receive, manage, analyze and visualize IoT
data in real-time. Thus, the project to integrate GeoMQTT in QGIS can be easily
realized by utilizing the QGIS plug-in system and the already developed GeoMQTT
Python client (see Section 4.4.2). The requirements for the plug-in are the following:

1. The user can connect to one or multiple arbitrary GeoMQTT brokers with an
arbitrary user name.

2. The user may subscribe to GeoEvents by using the GeoSubscription mecha-
nism of GeoMQTT. This includes

(a) specifying a topic filter according to the MQTT syntax,
(b) specifying a temporal expression and a temporal relation (temporal filter),

198 6. GEOMQTT INFORMATION & SERVICES

(c) specifying a geometry and a spatial relation according (spatial filter),

(d) specifying a QoS level.

3. The user may unsubscribe from a GeoSubscription by using the UNGEOSUBSCRIBE
message and the corresponding topic filter.

4. Incoming GeoEvents are added to the layer tree and presented to the user in
the map display of QGIS.

5. All events are captured in corresponding data types and the user has access to
all received data.

The plug-in was designed as a floating or dockable panel for QGIS in the Qt 4
Designer software4. Figure 6.2 shows the GUI of the GeoMQTT plug-in attached to
the bottom left corner of the QGIS application.

Map DisplayGeoMQTT Plugin

[4]

[1]

[2]

[3]

[5] [6]

[7]

Layer Panel

[8]

Source: Author’s illustration

Figure 6.2: GeoMQTT plug-in attached to the QGIS Desktop window

4http://doc.qt.io/archives/qt-4.8/designer-manual.html

http://doc.qt.io/archives/qt-4.8/designer-manual.html

6. GEOMQTT INFORMATION & SERVICES 199

In the GeoMQTT Plug-in panel, the user can connect to a broker by specifying the
address and his user name [1]. After the connection is successfully established,
GeoSubscriptions can be registered by the QGIS client: the user may specify a topic
filter [2], a temporal filter [3] and a spatial filter [4]. The geometry for the spatial filter
can be given by a string or with the help of the map display. The geometry of existing
features can also be selected. With the subscribe button [6], the user fulfills the
subscription. A successful GeoSubscription leads to a newly added layer group in
the layer panel. The name of this layer group corresponds to the chosen topic filter.
The group consists of three layers for vector data (point, linestring and polygon) [7]
and a layer group for raster data [8]. If a GEOPUBLISH for a GeoSubscription arrives,
the data is added to that layer group according to the geometry type of the message
or the payload of the message in case of raster data. The layers consist of historical
and new arriving data. With the hide-old-data option [5], the user can additionally
indicate that only new arriving data should be visible in the map display.

6.1.3 USE CASES AND FUTURE USE

Various use cases can be implemented with the GeoMQTT extension. Figure 6.2
illustrates a use case, in which raster data are streamed into QGIS: In a first step, an
Unmanned Aerial Vehicle (UAV) takes aerial photographs of the surface of the earth.
The photographs are streamed to a ground station, orthorectified by a computing
unit and the resulting orthophotos are published with GeoMQTT. The QGIS user
can subscribe directly to the orthophotos, which are visualized on arrival in the layer
panel.

Also vector data can be updated in real-time by using the GeoMQTT plug-in. For
instance, in a vehicle tracking scenario such as fleet tracking, the most recent
positions are published by the vehicles by using GeoMQTT. The positions can be
streamed in real-time into QGIS using the plug-in. Subsequently, the user might
run traffic analyses or trajectory mining tasks directly on this data. This vehicle
tracking scenario shows that real-time data combined with the analysis capabilities of
QGIS would potentially add tremendous value to GIS systems. In fact with the WPS
extension presented in Section 6.4, a mechanism is created based on a service to call
stream processing capabilities on a server. Integrating this service into the GeoMQTT
plug-in for QGIS would add further distributed stream processing functions to the
desktop GIS.

6.2 A RESTFUL ACCESS POINT TO GEOMQTT

GeoMQTT like MQTT is a M2M protocol and, therefore, is tailored to requirements
of machines. Users, on the other hand, need simpler methods to interact with

200 6. GEOMQTT INFORMATION & SERVICES

machines. The standards of the Sensor Web (see Section 2.5.1) are one way to
achieve this, but it only holds for sensor data. Having a more general access point to
the GeoMQTT broker would be a huge benefit, especially for developers. Therefore,
we conceptualized and implemented an architecture build upon the Representational
State Transfer (REST) principle, which bridges GeoMQTT and REST. The developed
architecture is presented in this section.

6.2.1 REST AND THE GEOSPATIAL IOT

REST and RESTful web services were first introduced by Roy Fielding in his doctoral
thesis (Fielding, 2000). It describes an architectural style for large-scale distributed
hypermedia systems by providing a set of fundamental architectural constraints. The
main concept in RESTful systems is the notion of resource which describes a logical
object. This might be a physical object, abstract concepts such as collections of
objects or dynamic and transient concepts such as server-side states or transactions
(Guinard et al., 2010b). The architectural style described by REST is detached
from technologies and implementations. However, RESTful web services use the
HTTP methods GET, POST, PUT and DELETE for retrieving, creating, updating and,
respectively, removing resources provided by a web server.

In some IoT projects RESTful architectures are used to access or update resources.
For instance, in the PortoLivingLab historical sensor data can be requested via a
RESTful API (Santos et al., 2018). In Isikdag & Pilouk (2016) the RESTful interface
of a graph database is requested by IoT nodes to update a sensor resource. Guinard
et al. (2010b) analyze the technologies behind REST architectures and propose how
these can be applied to the WoT. They argue that RESTful architectures are the most
effective solution for the WoT. Naik (2017) concludes in an IoT protocol comparison
that HTTP-based RESTful clients and servers represent the most interoperable, since
they solely need to support an HTTP stack for message exchange. Therefore, REST
components such as RESTful web services have its rightful place in IoT architectures,
although with its request/response mechanism, push-based real-time communication
is not possible. To benefit from the extensive interoperability through a simple HTTP
stack, establishing a bridge between GeoMQTT and REST based on HTTP seems
useful.

6.2.2 BRIDGING GEOMQTT AND REST

When adding a RESTful interface to GeoMQTT two different semantic models of
communication are bridged, the publish/subscribe interaction scheme of MQTT
and the request/response pattern of HTTP. According to Collina et al. (2012) or
Koster (2013), it is useful to couple the REST-oriented web architecture and the

6. GEOMQTT INFORMATION & SERVICES 201

real-time properties of MQTT to close the gap between machines and developers
in the IoT. Collina et al. (2012) implement a so-called QEST broker to expose
MQTT topics as REST resources and vice versa. For instance, the REST resource
/topics/room/237/temperature corresponds to the topic room/237/temperature. By
requesting the resource with an HTTP GET, the response consists of the latest
published value issued with the corresponding topic. Similarly, a HTTP PUT request
at /topics/room/237/temperature publishes the value of the request body with the
corresponding topic.

We follow a similar approach in the implementation of our REST bridge. Unlike Collina
et al. (2012), we do not integrate the REST interface directly in our GeoMQTT broker
but use an observer client, which subscribes to all messages/events. Additionally, we
use the bridge as a message logger, which does not solely store the latest value on
a specific topic but all messages that are received. The REST-GeoMQTT bridge is
shown in Figure 6.3.

 Broker

Rest endpoints

Observer & Logger

(Geo-) Publish Receive (Geo-) Publish

log

read

PUT GET DELETE

Publisher Subscriber

Source: based on Herle et al. (2016a)

Figure 6.3: REST-GeoMQTT Bridge

The observer and logger client subscribes to all MQTT and GeoMQTT messages at
the broker by using the multi-level wildcard # for topics and, respectively, a wildcard
for the temporal and spatial filters. It logs the received PUBLISH and GEOPUBLISH
messages in separate collections in a MongoDB5 database. The bridge itself is

5https://www.mongodb.com

https://www.mongodb.com

202 6. GEOMQTT INFORMATION & SERVICES

implemented in the Spring framework6 and has two different REST endpoints: one
for MQTT and one for GeoMQTT.

For MQTT, the REST resources are mapped to topics according to the approach used
by Collina et al. (2012). For instance, the HTTP resource
/publish/room/237/temperature is mapped to the topic room/237/temperature. In
a HTTP GET request, it is also possible to use the single-level wildcard + or URL-
encoded multi-level wildcard # in topic filters. The bridge queries the MongoDB
database for logged PUBLISH messages and responses with a list of messages in
JSON format. Setting the optional URL parameter size to 1 allows the user to retrieve
only the most recently published message that matches the topic filter. Accordingly,
with the HTTP PUT request of a resource, the request body is published to the
GeoMQTT broker by using the corresponding topic name. Wildcards, however, are
not allowed in the resource since they are also prohibited in topic names in MQTT
PUBLISH messages as well.

In GeoMQTT, the topic is handled similarly to the MQTT case - e.g. the resource
/geopublish/temperature is exposed as the topic temperature. The HTTP GET
request has four optional parameters: from, to, geometry and size like before.
from and to are used to define a time interval whilst geometry expects a geometry
in WKT format. Like in the GeoMQTT protocol, all OGC Simple Feature Access
geometries are supported extended by a BBOX and BUFFER type. The time interval
and geometry are both evaluated with a Covers relation. If not specified the temporal
filter and spatial filter are set to wildcards. The bridge requests the MongoDB
with temporal, spatial and topic filter and returns a GeoJSON FeatureCollection
of the logged GEOPUBLISH messages. Hereby, the spatial filter is evaluated with a
Covers relation in respect to the geometries of the GEOPUBLISH messages stored
in the database. The HTTP PUT request for the GeoMQTT endpoint expects two
required parameters besides the corresponding wildcard-free topic name as the
resource: the time parameter as an ISO8601 timestamp and the geometry parameter
in WKT syntax. Like the MQTT case, the request body and the parameters form a
GEOPUBLISH message that is sent to the GeoMQTT broker.

In addition, we implemented HTTP DELETE for the two endpoints to manage the
database. It deletes the matching entities in the database and returns them as a
JSON, or a GeoJSON document respectively. The request parameters are identical
to the parameters in the HTTP GET requests except for the size parameter.

As mentioned, since HTTP uses the request/response mechanism, it cannot fully
support a publish/subscribe interaction scheme. WebSockets could be one possible
solution to solve this issue (Fette & Melnikov, 2011). In fact, we already implemented
a GeoMQTT client with WebSockets. But Collina et al. (2012) argue that WebSockets

6https://spring.io

https://spring.io

6. GEOMQTT INFORMATION & SERVICES 203

do not implement the concept of URI after opening the communication and, therefore,
do not support the pure REST approach which involves exposing resources as topics
in our solution. They enhance the implementation by a long polling approach for
retrieving real-time updates in the browser without using WebSockets. However, this
is not implemented in our approach so far.

6.2.3 REST-GEOMQTT BRIDGE WEB APPLICATION

The REST bridge is used in the EarlyDike (see Section 5.2.1.1) project to log and
easily obtain events published by sensor nodes, which are deployed at dike lines
to monitor the structure of sea dikes. We set up a web map application to request
the GeoEvents and plot them in a map. Since the response type of the service is
a FeatureCollection of events in GeoJSON format, it is quite effortless to plot the
events, here in a leaflet7 map container (see Figure 6.4). The corresponding REST
request for the requested data in the application in Figure 6.4 is depicted in Listing
6.1.

Source: based on Herle et al. (2016a)

Figure 6.4: Web map application to request GeoMQTT events using the
REST bridge

7https://leafletjs.com

https://leafletjs.com

204 6. GEOMQTT INFORMATION & SERVICES

1 http://earlydike.de:8080/rest/geopublish/node/+/temperature?
2 geometry=LINESTRING(8.589248657226562 54.517893120052946,8.590707778930664, ...)

Listing 6.1: HTTP GET request to retrieve events from REST-GeoMQTT
bridge

The REST endpoint here is /rest/geopublish, the requested resource corresponds
to all stored messages which matches the topic filter node/+/temperature, where
the + wildcard is used to replace the id of the sensor node and, therefore, retrieve
all measured temperatures of every available sensor node. Additionally, the stored
messages are filtered by the specified geometry, a linestring, which represents the
southwestern first order dike line of the German North Sea island Pellworm (purplish
polyline in the map in Figure 6.4). The temporal filter, however, is not specified and,
thus not applied in the request.

6.3 BRIDGING THE SWE STANDARDS

Besides the RESTful access point to GeoMQTT, integration into a SOA such as the
service-oriented Sensor Web is desirable. By bridging these systems, observations,
measurements and access to sensors can be offered to users or software agents
as web services in a standardized way. Furthermore, it closes the interoperability
gap between sensor networks and SWE services. Our solution is described in the
following.

6.3.1 INTEROPERABILITY GAP

The vision of the Sensor Web, which was introduced in Section 2.5.1, includes
the idea of establishing a standard foundation for plug and play web-based sensor
networks (Botts et al., 2007). Walter & Nash (2009) argue that it is not an easy task
to connect sensors as data providers to SWE-service. Both, knowledge of the sensor
network’s format and of the SWE standards such as the SOS must be gathered to
solve this task. Further, the high-level design of the SWE standards and the low-level
protocols and formats of WGSNs lead to an interoperability gap. Even though the
transactional profile of the SOS allows for storing live sensor data in its data base, it
is hardly directly usable by sensor nodes. First, off-the-shelf WGSNs do not support
the standards and, second, using the standards requires high amount of processing
power. In environments with limited resources such as small sensor nodes encoding
data in XML structures and using HTTP as a protocol is a huge disadvantage in
terms of processing and transmitting.

6. GEOMQTT INFORMATION & SERVICES 205

6.3.2 CLOSING THE GAP WITH THE SENSOR BUS

This interoperability gap needs to be closed in a sophisticated way. Therefore, Bröring
et al. (2010) suggest an intermediary layer to bypass the gap between the low-level
protocols used in WGSNs and the high-level protocols of the SWE standards. They
introduce a so-called Sensor Bus, which follows a message bus pattern to facilitate
the integration of sensors and sensor data feeds into as Sensor and Spatial Data
Infrastructure (SSDI) based on SWE standards. Adapter applications connect to
the Sensor Bus waiting for new sensor data to arrive and forward the data into the
SWE services with the service’s compliant methods. For instance, arriving data is
persistently stored in the database, which is accessible by the InsertObservation
request of the SOS service. The Sensor Bus concept is illustrated in Figure 6.5.

Sensor Web Enablement Services

SOS

Adapter

SPS

Adapter

SES

Adapter

WGSN3WGSN1

WGSN2

Sensor Bus

Broker

Gateway

Gateway

Gateway

"traditional" Web

request
observations

requested
timeseries

Sensor Web Enablement Services

SOS SPS SES

WGSN3WGSN1

WGSN2

"traditional" Web

request
observations

requested
timeseries

?

Source: based on Herle et al. (2016b)

Figure 6.5: Closing the interoperability gap with a Sensor Bus

The figure on the left shows the interoperability gap between the SWE services
and the WGSNs. The Sensor Bus as an intermediary layer is introduced in the
figure on the right. It can be implemented using a bunch of different protocols.
For instance, Bröring et al. (2010) show the implementation in a proof-of-concept
with four different technologies: Internet Relay Chat (IRC), XMPP, Java Message
Service (JMS) and Twitter. Bröring (2012) concludes in his thesis that the Sensor
Bus with its publish/subscribe mechanism is useful for automated registration of
sensors and their data with the Sensors Web services. Other researchers seize on

206 6. GEOMQTT INFORMATION & SERVICES

this concept. Geipel et al. (2015), for instance, also utilize XMPP to notify client using
the Sensor Bus concept.

6.3.3 SENSOR BUS IN THE EARLYDIKE PROJECT

In the EarlyDike project, we adapt the idea of the Sensor Bus. However, we use
GeoMQTT for the implementation of the bus since the other protocols mentioned in
the previous section do not meet our requirements. First, the sensor nodes in the
WGSN should be independent clients in the system and, therefore, should also be
able to receive messages. Protocols that rely exclusively on a TCP/IP stack (e.g.
IRC or XMPP) are not suitable, since most WGSNs use connectionless transmission
protocols such as ZigBee. With the GeoMQTT-SN extension (see Section 4.5),
these capabilities are already implemented in the GeoMQTT protocol. Secondly, the
resource constraints restrict the abilities of sensor platforms to process, create and
transmit large data formats such as XML and, thus, rule out the use of protocols such
as XMPP.

The realization of the Sensor Bus involves the implementation of adapter applications,
which are basically GeoMQTT clients that connect to the bus and translates between
incoming GEOPUBLISH messages and the SWE services (see Figure 6.5). The topic
names, the timestamp/time interval and the geometry of the messages are mapped
to the metadata of the corresponding SWE services. As a proof-of-concept, this is
implemented in the EarlyDike project with the SOS service to store sensor data.

The SOS service uses O&M 2.0 to represent and transfer (spatiotemporal) mea-
surements. O&M defines a conceptual model as an XML based GML application
schema. An observation in the basic observation model is related to a procedure,
which represents the process that created the observation, for instance, a physical
sensor or a simulation. Further, it consists of observed properties, which describe
the properties that are observed, e.g., "temperature" or "humidity". A Feature of
Interest (FOI) is linked to each observation. It is a computational representation
of a real-world feature (e.g. "dike of Untjehörn"). The FOI has a shape property
for the geometry of the observation. The observation’s result can be of any type,
from single values to n-dimensional coverage of values. Finally, an observation has
three temporal properties: a phenomenon time to represent the time when the result
applies to the observed property, a result time which represents the production time
stamp of the observation and an optional valid time that defines the time period for
which the result is usable (Bröring et al., 2011). Additionally, the SOS data model
needs an observation offering URI which groups observations.

In the implemented adapter, the shape property of the FOI is associated with the
geometry of the GEOPUBLISH message, while the temporal properties are derived

6. GEOMQTT INFORMATION & SERVICES 207

from the timestamp or time interval. The payload of the GEOPUBLISH message rep-
resents the result of the observation. The other properties are generated from the
different levels of the topic name. For instance, the topic name SOS/insertObserva-
tion/labdike/geotextile/1/voltage/V is used in the EarlyDike project. The first two levels
determine which operation must be executed, here an InsertObservation, which is
sent to the deployed SOS server. The derived properties are given for the example
topic in Table 6.1:

Table 6.1: Mapping of the topic "SOS/insertObservation/labdike/geotex-
tile/1/voltage/V" to mandatory O&M attributes

O&M attribute Derived value from topic name
procedure SOS/procedure/labdike/geotextile
featureOfInterest SOS/featureOfInterest/labdike/geotextile/1
offering SOS/offering/labdike/geotextile
observedProperty voltage
Unit of Measurement (UOM) V

Source: Author’s illustration

For each GEOPUBLISH message the adapter receives, it derives the URI and generates
the InsertObservation XML. Before posting the XML to the SOS server, the adapter
checks if the sensor already exists in the server. If it exists, the adapter continues
with the request, otherwise an InsertSensor request is performed in advance. This
request needs basically the same properties (procedure, offering and FOI), which
are encoded in SensorML sub-elements. Following this message handling, the
adapter supports plug-and-play behavior for new sensors if the GEOPUBLISH topic
name complies with the described structure.

6.3.4 GEOEVENT BUS EXTENSION

A procedure in the observation model represents not only a physical sensor but
also simulations or processes. However, sometimes these simulations or processes
rely on the data issued by the physical sensor. For example, before persistently
stored in a database, raw measured sensor data must be processed further which
sometimes cannot be accomplished by the sensor node itself. So, a post processor
must be notified of the new measured data and process the data before writing it
to the database. For these cases, Ghobakhlou et al. (2014) suggest a service, the
so-called Sensor Data Processing Service (SDPS). The service subscribes to a
MQTT topic on which the raw sensor data is published and post processes each
message if it matches a specific pattern. Subsequently, the measured data is stored
in a SOS database.

208 6. GEOMQTT INFORMATION & SERVICES

Since these situations occur in the EarlyDike project quite frequently, we transformed
the Sensor Bus to an event bus and used the concept of GeoPipes using GeoMQTT
to connect producer and consumer of GeoEvents in a push-based way. We call
this bus the GeoEvent bus. (Post-) Processing services log in the GeoEvent Bus
and subscribe to the GeoMQTT topics on which the sensor data are published. The
results of the processing service are republished to the event bus on a different topic.
Data storage services such as the SOS subscribe to the post processed messages
and only store this data persistently omitting the raw values. That way, e.g. outliers or
erroneous data can be filtered easily or data aggregation functions can be applied to
reduce data for storage. For instance, services for filtering or aggregation tasks can
be set up by the implemented WPS extension for data streams, which is presented
in Section 6.4. Figure 6.6 shows the GeoEvent Bus with the different producers and
consumers of GeoEvents.

SWE Services
SOS

WGSN

Geo Event Bus

Broker

SPS SES

Gateway

WPS for
data streams QGIS ClientREST

Simulators

Software Bridges

G
e
o
M

Q
T
T
 o

v
e
r

W
e
b

so
ck

e
t

Read Events
Publish Events

Receive Data
Request resource

Source: based on Herle et al. (2016b)

Figure 6.6: GeoEvent Bus with different producers and consumers of
GeoEvents

Basically, the figure on the left-hand side shows the Sensor Bus concept while other
GeoMQTT information and services such as the REST bridge (Section 6.2) or the
QGIS client (Section 6.1) can also easily connect to the GeoEvent Bus to receive
data from it. However, also producers of data and processes acting on GeoStreams

6. GEOMQTT INFORMATION & SERVICES 209

can be linked together to form new event-driven process chains. In the EarlyDike
project, different simulators such as a storm surge simulator or a wave simulator were
implemented, which are based on data issued by physical sensors or the results of
other simulations. In this context, a set of bridges to other 3rd party software were
implemented as well. These include a Matlab8, a LabVIEW9 and a SWAN10 bridge
since other project partners relied on these software products. The bridges, written
in Python, manage a local socket to provide an Interprocess Communication (IPC)
interface to the 3rd party applications. The applications as well as the corresponding
bridge listen to and can publish messages to the socket. This way, 3rd party software
can be connected to the GeoEvent Bus and receive or generate GeoEvents.

6.4 ENHANCING THE WPS INTERFACE WITH GEOPIPES
SUPPORT

In our conceptual architecture (see Section 3.5), we introduced the notions of
GeoPipes, GeoEvent and GeoStreams. These concepts can be implemented us-
ing the GeoMQTT protocol. Now, we like to look at processing of GeoEvents and
GeoStreams by connecting geoprocessing mechanisms with GeoPipes. We aim for
a geoprocessing interface, which supports GeoStreams as an input, processes the
incoming GeoEvents in real-time and can issue processed GeoStreams. To achieve
this, the WPS interface of the OGC is enhanced by novel input and output types to
support the concept of GeoPipes (Herle & Blankenbach, 2017). The concept and the
technical implementation as a proof-of-concept are presented in this section.

6.4.1 INTRODUCTION IN REAL-TIME GEOPROCESSING

The diffusion of location-aware IoT devices increases the demand to process data
streams in real-time. Especially in time-critical applications such as monitoring
infrastructures, the need for real-time analysis and response becomes mandatory.
In real-time geoprocessing both dimensions - spatial and temporal - are used to
retrieve knowledge and support decisions. But, combining the two dimensions in
a real-time system brings numerous computational challenges and opportunities
for collection, storage and especially processing. According to Nittel (2015), future
real-time geoprocessing systems will most likely focus on spatiotemporal analysis
instead of spatial analysis over snapshots of spatial data. Therefore, existing methods
might require new algorithms and implementations to compute and deliver real-time

8https://www.mathworks.com/products/matlab.html
9https://www.ni.com/en-us/shop/labview.html

10http://swanmodel.sourceforge.net/

https://www.mathworks.com/products/matlab.html
https://www.ni.com/en-us/shop/labview.html
http://swanmodel.sourceforge.net/

210 6. GEOMQTT INFORMATION & SERVICES

results from much larger data sets. Typical tasks of these systems include real-time
geospatial queries over large amounts of data streams while keeping up with incoming
data, finding patterns in data streams or computing cross-correlations with other
streams respectively historical data. For these systems a formal foundation of time
and spatiotemporal concepts is required. McCullough et al. (2011) define, for instance,
a typology of real-time geoprocessing, which they draw from Worboys & Hornsy
(2004) model about representing the dynamic nature of real-world phenomena
within GIS (see Section 3.2.2). They simplify this four-stage model into snapshot
geoprocessing and stream geoprocessing. While snapshot geoprocessing still refers
to static processing of spatiotemporal data, in which input data is specified once, read
in once and the operation has a finite lifetime, stream geoprocessing is a radically
different approach. Since geospatial data streams are an unbounded sequence of
tuples with a time dimension but also a space dimension, querying and processing
these open-ended data streams meet different requirements than processing static
finite data. The amount of spatiotemporal data increases rapidly over time, and, thus,
applying data stream models to geospatial data becomes relevant when querying or
analyzing them in real-time (Appice et al., 2014). Different data stream models are
applied in data stream systems to be able to query continuously arriving data tuples
(Babcock et al., 2002). Common techniques are the so-called window approaches.
A count-based window model, for instance, decomposes the data stream into non-
overlapping windows of fixed size. These windows can be queried once they are
completed. After processing, the windows are discarded. The sliding window model,
on the other hand, considers the most recent data of the stream. It has a fixed window
size and is similar to a first-in, first-out queue ordered by time, which is updated
if a new data tuple arrives. Queries are compiled and executed on that queue. A
data stream model forms the basis for further knowledge discovery in the (geo) data
stream. Subsequent analyses could be summarization tasks of the data streams,
such as sampling or histograms, or more advanced and complex processing in the
field of data stream mining to predict values, cluster or find anomalies (Appice et al.,
2014).

6.4.2 OGC WPS INTERFACE AND REAL-TIME PROCESSING

In modern SSDIs standardized geo web services are used to guarantee interoper-
ability. The commonly used interface standard for geospatial processing is the OGC
WPS. It standardizes rules for the inputs and outputs of deployed services, as well
as the request methods of a service. The interface in version 1.0.0 is standardized
by the OGC since 2007 (Schut, 2007). Since version 1.0.0 has some drawbacks,
a Standard Working Group (SWG) was formed in 2009 to work on a new interface
standard, WPS 2.0, to evaluate and process change requests. Finally, in 2014 the
new standard WPS 2.0 has been released (Müller & Pross, 2018). However, since

6. GEOMQTT INFORMATION & SERVICES 211

there was no server-side implementation of the WPS 2.0 standard by the time of
implementing the extension, we focus here on the version 1.0.0, keeping in mind to
be able to transfer the concept also to the new version. Several open source WPS
1.0 server implementations exist, for instance the 52North WPS server written in
Java or the PyWPS server implemented in Python version 3. An overview of different
implementations and their performances can be found in Poorazizi & Hunter (2015).

The WPS is a request/response interface with three core operations, which can be
used by clients to interact with the server. The GetCapabilities operation is used to
inform the requesting client about service meta data in form of an XML-document that
describes the capabilities of a specific server implementation. Clients can request
detailed information about each process with the DescribeProcess operation by
specifying the process identifier in the request. Finally, to invoke a process, clients
may use the Execute operation including the input parameters in the body of the
request. The server parses the request, executes the process with respect to the
inputs and returns the result to the client. The WPS interface was developed to
process geospatial data, vector and/or raster data, but can also be used to implement
non-spatial processes. Therefore, input and output data can be of three different
types. LiteralValue parameters basically represent string data, which is sent directly
to the server. Server and client can specify units used and the atomic data type for
these parameters. Various data types, such as integer, string or date, can be chosen.
The ComplexValue type represents large datasets, which can also be binary. This
type is usually used for geospatial raster or vector datasets. WPS servers specify
acceptable input rules with an XML schema and MIME types, which the client should
follow. For instance, raster data are sent using base64 encoding, while vector data
are usually encoded in GML or other formats such as GeoJSON. However, the
standard (Schut, 2007) specifies the content of the ComplexValue data structure as
“any”. Accordingly, custom types can be defined as well. Last, the BoundingBoxValue
can be used to define an area of interest with a left-bottom and a right-top corner
using some CRS.

The WPS interface is based on synchronous HTTP as described and, thus, has
some restrictions in asynchronous real-time processing. For long-lasting complex
computations, which exceed the HTTP time-out duration, a polling approach is
defined for asynchronous operations in the standard. A requesting client can poll the
server to check the state of the processes, e.g. if it has finished or not. According
to Resch et al. (2010), the significant overhead in exchanging messages is a major
disadvantage of this approach, since the client must continuously poll the server.
They conclude that a notification mechanism seems to be a more suitable and
optimized approach. In Westerholt & Resch (2015) a WPS server is extended by
such a push mechanism to inform the client about the state of process execution.
To notify the client, the extension uses the WebSocket Protocol, so that messages
can be received in a browser. Although in this prototype, notifications are only used

212 6. GEOMQTT INFORMATION & SERVICES

to inform the client, the architectural approach could also be utilized to integrate
complex geospatial analysis into event-driven, real-time workflows. This includes
the input of live geospatial information into the process itself. Across the literature,
some exemplary real-time applications are described, which process sensor data
with the WPS interface. For instance, in Schaeffer et al. (2012) or Kmoch et al.
(2016) a simulation process is started by a WPS service, first querying a SOS for
the most recent available sensor data collected in a sensor network. The WPS
service is regularly invoked in a cycle after the previous process is finished. So in
these solutions, there are still time and methodology gaps between the data streams
emitted by sensor networks and the service processing the near real-time sensor
data. To be able to process live geospatial information in a WPS service without
polling a database actively (e.g. from a geo data stream published by sensors), a
notification mechanism needs to be integrated in the process itself. In Foerster et al.
(2012), a full streaming WPS is described utilizing the HTTP Live Streaming protocol
to integrate data streams into the process. In this approach, the WPS can receive
input data streams, process them and send intermediate results back to the client as
an output stream. The streams are represented by the playlist data format, which
helps to transport multimedia data chunks.

6.4.3 INTEGRATING GEOPIPES IN THE WPS INTERFACE

The GeoPipes concept can be coupled with the WPS 1.0 to provide real-time geo-
processing functionalities applied to spatiotemporal data streams. Since the WPS
interface is not suitable or tailored for providing real-time geospatial processes, some
authors came up with solutions described before to overcome these drawbacks.
Our approach to perform geoprocessing tasks on an unbounded sequence of data
tuples involves connecting the service to GeoPipes. Therefore, we define the in- and
output data types InGeoPipes, OutGeoPipes, InPipes and OutPipes, which are in
our architecture currently realized with GeoMQTT, respectively MQTT clients. The
architecture concept is illustrated in Figure 6.7.

A service “A” deployed on a WPS 1.0 server is invoked with an Execute request. In the
request InGeoPipes and OutGeoPipes are defined, which encode GeoSubscriptions
connection details. For each GeoPipe, the service connects to a GeoMQTT broker
with a client in a dedicated thread. If it is an InGeoPipe, the client subscribes to
the specified GeoSubscription. The service computes a custom function on the
incoming GeoStream and eventually publishes a message to an OutGeoPipe. At this,
a process may connect to different InGeoPipes and OutGeoPipes. Both types of pipe
are defined by the user of the service. Unlike Westerholt & Resch (2015) in which the
server chooses the event server of the outputs and provides the connection details
in the response of the Execute query, the connection details for the OutGeoPipes
are also specified by the client and, therefore, an input to the service. To receive

6. GEOMQTT INFORMATION & SERVICES 213

Broker
Publisher

Broker

Broker

Service B

Service C

Service D

InGeoPipes

Service A

OutGeoPipe

WPS 1.0 ServerPublisher

Publisher

Source: Author’s illustration

Figure 6.7: Proposed architecture for connecting the WPS interface with
GeoPipes

results published to the OutGeoPipe, the requesting client must connect to the pipe
itself and independently from the WPS service. The benefits of this design decision
include that the WPS standard and the XML structures for the input do not require
non-compliant customizations. It also facilitates fusing different streams and chaining
stream processes since the client has control about the endpoints of the streams.
However, this implementation implies that the client has profound knowledge about
possibly multiple remote servers, which can be unfavorable in certain applications.

GEOPIPES INPUT TYPES

For the input and output types definition the rule set of data types of the WPS 1.0
standard are used. The WPS interface defines three different input data types:
LiteralData, ComplexData and BoundingBoxData. For the definition of a (Geo-
)Pipe the BoundingBoxData input type is not suitable, because it strictly expects a
predefined XML data structure with geographic coordinates for a rectangular area.
However, the LiteralData and ComplexData input types can both be used to model
and submit the connection details for a (Geo-)Pipe.

The LiteralData input consists of a simple literal value. A "dataType" attribute can
be included in the parameter. Typical data types are strings or integers but it is
also possible to choose an "anyURI" data type. So, we can define subscriptions for
InPipes/InGeoPipes and topic names to publish to for OutPipes/OutGeoPipes in an
URI. Table 6.2 shows the URI syntax for the different versions of the pipes.

214 6. GEOMQTT INFORMATION & SERVICES

Table 6.2: URI syntax for different types of pipes

Data type Uniform Resource Identifier (URI)

InGeoPipe geomqtt://[clientid:password@]<address>:<port>
/<topicFilter>?temporal=<relation>,<temporalExpression>
&spatial=<relation>,<geometry>

InPipe mqtt://[clientid:password@]<address>:<port>
/<topicFilter>

OutGeoPipe geomqtt://[clientid:password@]<address>:<port>
/<topicName>

OutPipe mqtt://[clientid:password@]<address>:<port>/<topicName>

Source: based on Herle & Blankenbach (2017)

The scheme of the URI determines the used protocol. Further, for instance an
InGeoPipe requires the address and port of the broker and potentially the credentials
(client id & password) to log in. The GeoSubscription details are specified in the path
and query parts of the URI. Whilst the path represents the topic filter, the temporal
filter and the spatial filter are defined in the query part. With this URI syntax method,
it is only possible to define a single GeoSubscription at a time. In an OutGeoPipe or
OutPipe only a topic name, which is the path of the URI, is defined.

Table 6.3: MIME types for different types of pipes

Data type Multipurpose Internet Mail Extensions (MIME)

InGeoPipe application/x-ogc-ingeopipe; subtype=geomqtt

InPipe application/x-ogc-inpipe; subtype=mqtt

OutGeoPipe application/x-ogc-outgeopipe; subtype=geomqtt

OutPipe application/x-ogc-outpipe; subtype=mqtt

Source: based on Herle & Blankenbach (2017)

For a more sophisticated solution, the details of the pipes can also be specified within
a custom XML encoding in a ComplexData input type. The WPS standard states
that the content of the ComplexData data structure can be of any type. Thus, this
approach is suitable and valid here. The ComplexData version has some advantages
in comparison to the LiteralData version. For instance, it is more flexible in defining
multiple GeoSubscriptions in one InputGeoPipe. Additionally, with the created XML
schema files, the input can be validated automatically when the user sends the
request. Based on the WPS Best Practices Discussion Paper (Schaeffer et al., 2012),
Table 6.3 shows the introduced MIME types for the different pipes.

geomqtt://[clientid:password@]<address>:<port>/<topicFilter>?temporal=<relation>,<temporalExpression>&spatial=<relation>,<geometry>
geomqtt://[clientid:password@]<address>:<port>/<topicFilter>?temporal=<relation>,<temporalExpression>&spatial=<relation>,<geometry>
geomqtt://[clientid:password@]<address>:<port>/<topicFilter>?temporal=<relation>,<temporalExpression>&spatial=<relation>,<geometry>
mqtt://[clientid:password@]<address>:<port>/<topicFilter>
mqtt://[clientid:password@]<address>:<port>/<topicFilter>
geomqtt://[clientid:password@]<address>:<port>/<topicName>
geomqtt://[clientid:password@]<address>:<port>/<topicName>
mqtt://[clientid:password@]<address>:<port>/<topicName>

6. GEOMQTT INFORMATION & SERVICES 215

Like the encoding in LiteralData, the address and port of the broker are also defined in
the ComplexData representation (see Listing 6.2). A login tag can be used to submit
credentials (omitted here). The Geosubscribe tag indicates a single GeoSubscription
with topic, temporal and spatial filters. It can be used multiple times. The XML
is parsed by the server, validated against the XML schema file and then used to
connect to the broker and register the GeoSubscriptions. The other pipes are defined
similarly. A schema is created for each of the types and handled in the same way.
Like mentioned, output pipes are used to publish processing results and, thus, expect
solely a topic name to publish to.

1 <pipe:GeoMQTTInput xmlns:pipe="http://www.gia.rwth-aachen.de/geopipes">
2 <pipe:Address>localhost</pipe:Address>
3 <pipe:Port>1883</pipe:Port>
4 <pipe:Geosubscribe>
5 <pipe:TopicFilter>temperature</pipe:TopicFilter>
6 <pipe:TemporalFilter relation="CONTAINS"></pipe:TemporalFilter>
7 <pipe:SpatialFilter relation="EQUALS">POINT(6 51)</pipe:SpatialFilter>
8 </pipe:Geosubscribe>
9 </pipe:GeoMQTTInput>

Listing 6.2: XML-encoded InGeoPipe

NAMED WILDCARDS MECHANISM

A special case in MQTT and GeoMQTT are the single-level and multi-level wildcards
in topic filters. Imagine a service subscribes to a topic filter car/+/velocity where the
wildcard "+" represents the car id for each car individually. The service computes the
acceleration for each car individually and publishes the result to an output pipe with a
topic name, which is customized to each car with respect to its id (see Figure 6.8).

WPS process
car/53/velocity

car/2/velocity car/2/acceleration

car/53/acceleration

Source: based on Herle & Blankenbach (2017)

Figure 6.8: GeoPipes and named wildcards example

For these situations, the named wildcards mechanism in topic filters of a subscription
is introduced. In the Execute method of the WPS service, the user can assign a
name in curly brackets to wildcards used in topic filters. In the previous example the
topic filter would be car/+{car_id}/velocity. This is especially useful if we establish an
output pipe which uses the {car_id} variable to distinguish between entities. In the

216 6. GEOMQTT INFORMATION & SERVICES

topic name of the output pipe, the user then just needs to set the specific name of
the variable. In this example, the topic name would be car/{car_id}/acceleration. In
a similar way, this mechanism can also be used for the multi-level wildcard. In this
case, the variable would potentially consist of a string representing multiple hierarchy
levels of the topic.

HANDLING WPS DRAWBACKS

As explained, the WPS interface standard is designed to support operations with a
finite lifetime by using HTTP requests. On the contrary, (geospatial) data streams are
an open-ended unbounded sequence of tuples. Processing these streams implies to
start an operation with (possibly) an infinite lifetime. In addition, the set of methods of
the WPS interface does not include a method to stop a process. A process, which
is executed with the Execute method, runs until it succeeds or fails. The requesting
client is not capable of interfering with the process execution. Thus, in McCullough
et al. (2011) the WPS server implementation was modified by adding a StopExecuting
method to facilitate the management of continuous computing jobs. However, this
is obviously not compliant to the standard and, therefore, not implemented in our
solution.

To avoid an infinite lifetime of the process or zombie processes, our simple approach
involves an extra parameter in each Execute request, which limits the lifetime of
the process. The Time-To-Live (TTL) parameter is specified by the requesting
client in seconds. The operation is applied to the streams for this amount of time.
Subsequently, the service disconnects from (possibly) multiple brokers and exposes
the resulting XML response of the process to the client.

The preferred way of invoking a WPS process in our approach is the asynchronous
mode. This has some advantages in comparison to the synchronous mode. For
instance, if the Execute request is accepted by the server, the immediate Proces-
sAccepted response allows the client to establish a connection to the output pipes to
receive the results of the stream process. In synchronous mode on the other hand,
the client can only connect directly to the broker without knowing the state of the
request. Furthermore in asynchronous mode, an Execute request for a long-running
stream process (the TTL parameter is set to a high value) does not exceed the HTTP
time-out duration. Figure 6.9 visualizes the sequence of messages exchanged in our
streaming WPS mechanism. The asynchronous mode of the WPS server is utilized
here. The data streams are processed for TTL seconds. After the process time is
exceeded, the client as well as the process disconnects from the pipes.

6. GEOMQTT INFORMATION & SERVICES 217

OutputGeoPipeInputGeoPipeWPS serverClient

disconnect

disconnect

processed (geo) event
processed (geo) event

processed (geo) event

processed (geo) event

ProcessSucceeded

GET ExecuteResponse

GET ExecuteResponse

ProcessStarted

(geo) event
(geo) event

(geo) event

connect & subscribe

(geo) event

connect & subscribe

ProcessAccepted

POST Execute

Process stream for TTL sec.

Source: based on Herle & Blankenbach (2017)

Figure 6.9: GeoPipes integration in WPS - sequence of messages

6.4.4 IMPLEMENTATION AND SAMPLE PROCESSES

The GeoPipes extension for the WPS interface described in the previous paragraphs
is implemented and tested in PyWPS-4, a server side implementation of the OGC
WPS standard written in Python version 3 (PyWPS Development Team, 2009). It
was chosen since it is easy to customize for our needs and new processes can
be set up with low effort. Furthermore, a GeoMQTT client in Python is already
implemented. Thus, processes using GeoMQTT as input and/or output GeoPipes
can be implemented without great effort.

PyWPS-4 also offers some features we are using in our processes. For instance,
input data can be validated in different modes up to a very strict validation using
a given XML schema file. Additionally, PyWPS-4 is under active development and
WPS 2.0 features will be implemented in the future (Čepický & De Sousa, 2016).
With this server implementation, we set up some real-time geo processes, two of
them are presented in the following sections. The processes use stream data models,

218 6. GEOMQTT INFORMATION & SERVICES

such as the sliding window technique explained before. All described processes are
compliant to the WPS standard, which means that the operation set is not modified
and the processes use the TTL parameter to specify a finite runtime. Other additional
processes are described in Herle & Blankenbach (2017) but omitted here.

EXAMPLE PROCESS - DYNAMIC CONVEX HULL

The generic implementation of the GeoPipes extension in our adjusted PyWPS
instance allows us to run dynamic geometry algorithms. We set up a real-time
processing service which calculates the dynamic convex hull of a changing set of
points utilizing Overmars & van Leeuwen’s (1981) algorithm. The algorithm is known
to be efficient when inserting or deleting points from the set. For our implementation,
we used the version of Cisneros (2007). The in- and outputs of the service are
specified in Table 6.4.

Table 6.4: Inputs and Outputs for dynamic convex hull service

Name WPS Input Data type/Format

Inputs points ComplexData application/x-ogc-ingeopipe; sub-
type=geomqtt

convexhull ComplexData application/x-ogc-outgeopipe; sub-
type=geomqtt

ttl_points LiteralData integer

ttl LiteralData integer

Outputs response LiteralData boolean

Source: based on Herle & Blankenbach (2017)

The points-InGeoPipe represents the input stream for the geometries. Only the
geometry and timestamp information of the GeoMQTT GEOPUBLISH messages are
used. If a geometry is inserted into the set of points, the updated convex hull geometry
is published with a GeoMQTT message in the OutGeoPipe defined in convexhull.
The ttl_points parameter allows the user to specify the time the incoming points are
part of the set. After the defined seconds the messages (and their geometries) are
deleted from the set of points. The updated convex hull geometry is published once
again to the OutGeoPipe. The stream process stops after ttl seconds. A demo of the
process can be found on the website11 .

11http://wpsdemo.gia.rwth-aachen.de/convexhull.html

http://wpsdemo.gia.rwth-aachen.de/convexhull.html

6. GEOMQTT INFORMATION & SERVICES 219

EXAMPLE APPLICATION - ONLINE MAP MATCHING

The dynamic convex hull algorithm is a good example for how we can utilize and
process spatiotemporal messages received by the GeoPipes. However, it is not a
very realistic use case. In the research field of trajectory data mining, more realistic
examples can be found. Trajectory data mining describes the process of knowledge
discovery from trajectory data. Ultimately, methods of trajectory data mining can
be used to e.g. analyze, query or classify mobility patterns or traffic (Zheng, 2015).
In the processing chain of trajectory data mining one essential step is to match
the raw and noisy locations from GNSS to a graph, for instance a road network.
This preprocessing step is called map matching, respectively online map matching
if it is applied to a data stream. We set up an online geometric map matching
algorithm which matches the received GNSS points to the nearest road and issues
the projected map matched location. The input parameters for the WPS service are
defined in Table 6.5.

Table 6.5: Inputs and Outputs for map matching service

Name WPS Input Data type/Format

Inputs gpslocation ComplexData application/x-ogc-ingeopipe; sub-
type=geomqtt

mmposition ComplexData application/x-ogc-outgeopipe;
subtype=geomqtt

road_network LiteralData application/gml+xml

ttl LiteralData integer

Outputs response LiteralData boolean

Source: based on Herle & Blankenbach (2017)

The gpslocation-InGeoPipe represents the input stream of the data, the mmposition-
OutGeoPipe is used to publish the map matched position and the road_network is a
user-defined road network, which can be specified as a reference pointing to a GML
file or a WFS request. With the named wildcard mechanism, the implementation
allows to distinguish between different entities, if, for instance, their identifiers are
encoded in the topic name. That way, the topic names in the output GeoEvents
can be adjusted to the specific map matched entity. As a proof-of-concept, we
implemented a web application for the simple online map matching algorithm of cars.
A screenshot of the client is illustrated in Figure 6.10.

Since the implemented simple map matching algorithm only projects the received
location onto the nearest street in the road network, it is not a stream but a snapshot
geoprocessing application. This means, the process could also be started with each

220 6. GEOMQTT INFORMATION & SERVICES

Source: Herle & Blankenbach (2017)

Figure 6.10: Web application for the online map matching WPS process

location individually. However, if we consider more sophisticated online map matching
algorithms, which also include the history of GNSS locations and topological features,
then it becomes a stream geoprocessing algorithm. For instance, Mattheis et al.
(2014) introduced a Hidden Markov Model online map matching algorithm, which
also considers the previous states (locations) of the car.

Map matching is a necessary preprocessing step in trajectory data mining. We
only implemented this simple algorithm but with the OutGeoPipe defined, various
subsequent other services could be set up subscribing to the GeoPipe to e.g. cluster
cars or analyze traffic conditions. So, a chaining of different stages in a mining chain
can be realized by coupling the GeoPipes together. This also supports the chaining
idea of the original WPS interface.

CONTROL DSP SYSTEM WITH THE WPS INTERFACE

In an extended study, we implement efficient online map matching algorithms in a
scalable Distributed Stream Processing (DSP) architecture and invoke the offered
services using the WPS interface with GeoPipes (Laska et al., 2018). To achieve this,
we setup an Apache Storm stream processing cluster and realized the input piping

6. GEOMQTT INFORMATION & SERVICES 221

with GeoMQTT and Apache Kafka. The map matched positions are published by
the system utilizing GeoMQTT, so that clients may directly subscribe to the stream
processing results. As a proof-of-concept the proposed architecture was implemented
and evaluated utilizing distributed map matching algorithms. However, it can also
be used to implement applications for several other use cases of deploying and
evaluating distributed stream processing algorithms that operate on spatiotemporal
data streams originating from IoT devices.

In this proposed architecture GeoMQTT is applied to setup real-time stream process-
ing pipelines on GeoEvents in an easy fashion. It serves as the glue between IoT
devices, the real-time stream processing architecture and the end user of the results.
For the use case, the described WPS extension and the implemented process to
control the distributed stream processing offer the map matching algorithm as a
standardized real-time geoprocessing service to end users. Basically in- and out-
puts are identical to the simple map matching algorithm described before; however,
the underlying stream processing is outsourced to the DSP architecture, which is
dedicated to stream processes and provides more processing power than a single
server.

222 6. GEOMQTT INFORMATION & SERVICES

CHAPTER 7

CONCLUSION & FUTURE WORK

In this thesis, an event-driven architecture for the emerging Geospatial IoT is pro-
posed, implemented and evaluated. Based on the fundamental concepts and tech-
nologies of the IoT, a protocol for exchanging spatiotemporal data in real-time is
conceived and created in a prototypical system. This chapter summarizes in Sec-
tion 7.1 first the developments and findings we achieved in this thesis. This covers
the results of the different research areas we address to implement a Geospatial IoT
platform:

1. Conceptual view on the Geospatial IoT: modeling, data types, mechanisms

2. Implementation of the concept: requirements, functionalities, evaluation

3. Integration of GeoMQTT into IoT concepts and contemporary GIS technologies

After reflecting the achievements, in Section 7.2 we look at future work in these areas,
especially for the concepts and implementations realized in this thesis.

7.1 ACHIEVEMENTS AND REFLECTION ON RESEARCH
OBJECTIVES

ARCHITECTURAL CONCEPT FOR A GEOSPATIAL IOT

Regarding the conceptual view on the Geospatial IoT, we raised several research
objectives in the beginning of the thesis. These covered especially the form and
notion of the Geospatial IoT, its involving things, their spatial nature and data models
that are used in a Geospatial IoT. Starting from that, we approached the term
Geospatial IoT by investigating the spatial nature of smart things and the essential
components of IoT systems. Physical things in the real world have five spatial
properties: location, shape, size, orientation and sphere of influence. These can
be measured by different means, e.g. the location with GNSS. Further, integrating
spatial concepts into IoT systems, especially in the OODA feedback loop of CPSs, it
becomes evident that it is driven by spatial events. Subsequently, we analyzed the
term event and the spatiotemporal modeling in GIS to find an appropriate ontology.
Based on the conjunction of Galton’s ontology processes as patterns of occurrence
and Peuquet (1994)’s Triad Framework, we derived the definitions and modeling of

224 7. CONCLUSION & FUTURE WORK

Geospatial Events and Geospatial States. Both describe a Geospatial Process with
a spatial component in the real world. But while the Geospatial Event models an
occurrent in the real world over a time interval, the Geospatial State represents a
state of a continuant at a specific point in time. With these established, the essential
modeling concepts for a Geospatial IoT were found and we could proceed with
designing an appropriate architecture.

Based on these observations, further research questions include the types of data
and their related concepts and mechanisms, which can be subsequently derived
for implementing an architecture for the Geospatial IoT. We found that the abstract
data types of geospatial processes form the basis of events and states in the real
world issued e.g. by real-world objects. Taking this, we came up with a data type
for our Geospatial IoT architecture. The GeoEvent combines both abstract data
types in a general message type. It describes a 4-tuple consisting of a theme, a
temporal component (timestamp or time interval), a spatial component as well as the
body (or payload) of the message. This message type is the basic mechanism to
exchange data in our proposed Geospatial IoT architecture. With GeoEvents and
the EDA pattern, we developed and defined accompanying components such as
the GeoPipe, the GeoStream or the GeoSubscription. The latter one represents the
primary way for participants in the architecture to express their interest in GeoEvents.
It consists of three filters applied to the first three parameters of GeoEvents. With its
help consumers may connect to a GeoPipe. When connected, a consumer receives
a stream of GeoEvents (GeoStream) associated with the GeoPipe. With these
components and mechanisms, we could design a GeoEvent-driven architecture for a
Geospatial IoT.

IMPLEMENTATION OF A GEOEVENT-DRIVEN ARCHITECTURE FOR A
GEOSPATIAL IOT

With the architectural pattern for a Geospatial IoT established, various research
questions occurred such as the proper type of communication or the qualification
of various IoT protocols for the architecture. The concept of the GeoEvent-driven
architecture for a Geospatial IoT has different requirements for an implementation:
on the one hand mechanism, which are determined by the nature of EDA and, on
the other hand, technical demands from the fundamentals of IoT platforms and
systems. We raised requirements such as the messaging pattern, the lightweight or
the adaptability and analyzed messaging candidates with respect to their suitability.
We found MQTT to be the best matching candidate regarding our requirement
engineering. The main reasons for this choice was, first, the publish/subscribe
mechanism, which provides the messaging in a push-based fashion, so that data
streams in real-time can be initiated. And secondly, the already given adaptability to
resource-constrained environments such as sensor networks in IoT infrastructures.

7. CONCLUSION & FUTURE WORK 225

Based on the technical specifications of the MQTT protocol in version 3.1.1, we intro-
duced the extension GeoMQTT including new message types to publish GeoEvents,
subscribe to them via a GeoSubscription, or to perform an unsubscribe process.
To issue a proper GeoEvent, the GEOPUBLISH packet consists of a timestamp or
time interval, a geometry, which can be specified in multiple encoding formats and
different CRSs, a topic name and a payload. For specifying a client’s interest in
GeoEvents, the GEOSUBSCRIBE type was introduced. It is used to register one or
multiple GeoSubscriptions with their three filter types. These are then evaluated by
the broker to distribute the GeoEvents accordingly. At this, the topic filter has the
common functionality like in MQTT, while the temporal and spatial filter consists of
a temporal relation and a timestamp or time interval, respectively a spatial relation
from the DE-9IM set of predicates and a reference geometry. Further, clients may
unsubscribe from GeoSubscriptions using the topic filter and the GEOUNSUBSCRIBE
packet type. Conceptually, these advanced functionalities transferred the topic-based
publish/subscribe mechanism of MQTT to a content-based publish/subscribe based
on three types of information in GeoMQTT.

We implemented a GeoMQTT API in Java, which is used to extend an existing MQTT
broker and client with the introduced message types and the spatiotemporal capabili-
ties. Furthermore, several other clients were created to support other programming
languages and environments. These include a Python client and a JavaScript client.
Especially the latter one can be used with the technology of WebSockets to connect
a web application to a GeoMQTT broker and, thus, receive GeoEvents in real-time
in a browser. With these clients established, we were also able to connect contem-
porary GIS technologies quite effortless to the GeoEvent-driven architecture like we
will summarize later in this conclusion. On top of that, we advanced the extension
MQTT-SN for connectionless transmission, such as ZigBee in sensor networks, with
our spatiotemporal functionalities naming it GeoMQTT-SN. The focus of this advance-
ments laid on the number of bytes transmitted for a GeoEvent or a GeoSubscription.
Different strategies were used and implemented to reduce the message sizes. This
included e.g. splitting up messages into multiple packets or outsourcing information
completion from small sensor nodes to Internet gateways. GeoMQTT-SN client and
gateway were implemented in C++ runnable on single-board computers such as
Arduino or Raspberry Pi.

The implemented protocol and its features must meet the constraints and require-
ments of a Geospatial IoT. Questions on how the prototypical implementation can be
evaluated with respect to the nature of a highly-connected system emerged. These
involved on the one hand the compliance with the intended design and, on the other
hand, the testing of real-world scenarios within the Geospatial IoT and its applica-
tions. Therefore, GeoMQTT was evaluated against the remaining requirements for
a GeoEvent-driven architecture for a Geospatial IoT. The evaluation focused first
on the expressiveness of the introduced messages regarding the conceptual data

226 7. CONCLUSION & FUTURE WORK

type of GeoEvents and the mechanism of GeoSubscriptions using Geospatial IoT
scenarios. The results show that for the specific use cases the expressiveness is
sufficient, but other applications may need other modeling capabilities such as the
orientation of things, which cannot be modeled currently. Second, the message sizes
were assessed in comparison to other encodings. We found that for the scenario
modeling, the packet sizes are very small in comparison to other formats and, thus,
beneficial in IoT environments. To test the efficiency and scalability, the GeoMQTT
broker and its performance were tested in two testbeds and with several test plans
simulating different message loads. We observed that in comparison to plain MQTT,
the performance in terms of message throughput is clearly decreased, since the
broker must evaluate two additional filters. However, we showed that by using a
broker cluster, this performance reduction can be compensated. We found that
the broker is horizontally scalable and, thus, the architecture may react to changed
conditions such as an increasing number of messages.

INTEGRATION OF GEOMQTT INTO IOT CONCEPTS AND CONTEMPORARY
GIS TECHNOLOGIES

GeoMQTT can be used to deploy a GeoEvent-driven architecture for the Geospatial
IoT. With this architecture established, we can create Geospatial IoT applications
and integrate GeoEvents and related concepts into contemporary GIS technologies.
In this research field, several questions occurred, which were investigated by the
following developments. Especially, the contributed effort and effectiveness of inte-
grating the Geospatial IoT in existing GIS technologies were focused on. Further, we
wanted to investigate if existing GIS technology can cope with protocols and data in
a Geospatial IoT.

Approaching these questions, we implemented first a GeoMQTT plug-in for QGIS,
an open source desktop GIS. The interaction between real-time GeoEvents and
geospatial analysis functionalities offered by these expert system promises large
potentials for understanding, modeling and visualizing natural or artificial ecosystems.
The plug-in utilizes the created Python GeoMQTT client, so that users can specify
and register GeoSubscriptions with the broker. Whether vector or raster data, the
plug-in parses the incoming GeoEvents and loads them into the map display of
QGIS. Subsequently, geospatial analyses and algorithms can be applied. This proof-
of-concept illustrates that conventional desktop GISs can integrate data from the
Geospatial IoT, especially GeoEvents in our architecture. Since QGIS does not
follow an event model, the incoming spatiotemporal GeoEvents must be mapped in
suitable in-build data types. Thus, it takes some efforts to adjust the different data
types. Although the developed plug-in proofs that QGIS can receive and visualize
GeoEvents in real time, further research about its capabilities of handling massive
amounts of concurrent GeoEvents should be conducted.

7. CONCLUSION & FUTURE WORK 227

In distributed GISs such as SDIs, several architectural patterns find its usage.
GeoMQTT and the proposed architecture are based on the EDA pattern, but some-
times other architectural styles might be beneficial. Following the WoT idea, we
implemented a RESTful bridge for providing an access point to GeoMQTT using
HTTP methods. The software also serves as a logger system, so that historical
GeoEvents are stored in a database and can be retrieved by HTTP GET request.
Further, with HTTP PUT new GeoEvents can be published into the system. Although
the pull-based approach of HTTP seems to be contrary to the idea of data exchange
in real-time, the bridge has its rightful place in the architecture: HTTP is probably the
most interoperable message exchange mechanism in the Internet, only a browser is
needed. Thus, it can be used in an easy way e.g. by developers to insert GeoEvents
into the architecture. We found that requesting and publishing of GeoEvents in a
GeoJSON format using the RESTful bridge facilitates integration into existing desktop
and Internet GIS solutions such as QGIS or web mapping applications based on
OpenLayers or Leaflet.

Like the ROA style, the architectural pattern of SOA is favorable in some applications.
The idea of the Sensor Web implements a SOA with the help of the SWE standards.
It proposes a concept in which sensor data and sensor networks are accessible
by web services using HTTP methods. With GeoMQTT we implemented a Sensor
Bus to interconnect the services of the Sensor Web with the event-driven style of
our Geospatial IoT architecture. Since low level resource-constrained sensor nodes
are not able to use HTTP and XML encodings directly, the implementation closes
also the interoperability gap between sensors and services. We proved the concept
by an implementation of a bridge between GeoMQTT and the SOS, which offers
historical sensor data as a service. Further, we extended the Sensor Bus concept
into a GeoEvent Bus, which connects not only sensor nodes and service, but also
other data producers such as analysis software or visualization entities such as web
browsers.

Further, we also integrated our proposed Geospatial IoT architecture as well as its
related concepts and protocols into GeoEvent processing capabilities. We enhanced
the WPS interface of the OGC in a way that not only static data can be given as input
and output. We introduced new data types, namely the GeoPipes concept, which
can be used to specify input and output (geo) data streams. As a proof-of-concept,
MQTT and GeoMQTT as push-based technologies were utilized to implement stream
processing services. The extension with its new data types influences the modeling
side of the service, so that the interface itself stays compliant to the standard. With
push-based protocols as input and output types, processes can be created, which
facilitate sensor fusion or CSP. By chaining different GeoPipes issued or taken as an
input by several processes, processing chains acting on these (geo) data streams
can be established. Further, we coupled the enhanced WPS interface with DSP
capabilities, so that we are also able to provide stream processing clusters based

228 7. CONCLUSION & FUTURE WORK

on frameworks such as Apache Storm as services. This might be of interest in
the future when the number of IoT devices and of (geo) data streams will increase
tremendously.

With these applications and extensions, we showed that an architecture for the
Geospatial IoT can be implemented with a spatiotemporal model as a basis message
exchange type. We created a protocol, which is adjusted to the specific requirements
of the IoT and, simultaneously, can be used to publish spatiotemporal-enriched data
as a stream. GeoMQTT provides the capabilities to deploy a GeoEvent-driven ar-
chitecture and, thus, enables message exchange and initialization of control loops
in real-time. Further, we showed that the integration of existing contemporary GIS
technology into the architecture is possible and adds value in terms of visualiza-
tion, exploring and processing Geospatial IoT data. Hence, we conclude that the
raised research questions can be answered sufficiently, although additional questions
arose while writing this thesis. There is still room for further research in the field of
Geospatial IoT. Some ideas to enhance our proposed solution are outlined in the
next section.

7.2 FUTURE WORK

For the different fields of our research and the implemented approaches, we can think
about future enhancements. This covers the modeling of data types and mechanisms
in our conceptual architecture for the Geospatial IoT as well as the implementation
and mechanisms in GeoMQTT, the evaluation methodology and the Geospatial IoT
related concepts and services. Some of the ideas and future work are presented in
this section.

CONCEPT OF GEOEVENTS AND GEOEVENT-BASED ARCHITECTURE FOR A
GEOSPATIAL IOT

The spatial modeling of GeoEvents is currently only accomplished by the geometry of
the corresponding real-world geospatial event or state. Other spatial properties are
omitted or cannot be integrated into the spatial component. Like already mentioned,
additional spatial properties might be useful in Geospatial IoT application such as the
orientation or the pose in 3D space. Talking about 3D, currently solely 2D objects and
their relationships given by DE-9IM are supported. In the future however, 3D objects
as well as their relationships for specifying GeoSubscription in the third dimension
are suitable and useful additions. With these integrated, additional spatial properties
such as shape or size can be easily derived.

From an architectural point of view, the proposed GeoEvent-based architecture solely
runs on the flow of GeoEvents. It is the single data type which is used for controlling

7. CONCLUSION & FUTURE WORK 229

the flow or transferring data regardless of the origin. We can think of introducing
advanced or derived sub data types based on GeoEvents to distinguish e.g. different
payloads or origins. This would also allow to modify the GeoSubscription mechanism
to a type-based publish/subscribe system.

GEOMQTT MECHANISMS & IMPLEMENTATION

However, also the implementation of the current concepts in GeoMQTT can be
improved further. Besides the improvements in modeling GeoEvents, the spatial
component of GeoEvents or GeoSubscriptions can be extended by e.g. indirect
georeferencing systems. Currently, the specification of geometries solely depends
on coordinates or lists of coordinates. If we would introduce indirect georeferencing
systems such as place names or postal codes, the subscribing process might become
easier for clients, especially human clients. Humans memorize words much easier
than coordinates and, thus, might be able to express their interests in GeoEvents
without much foreknowledge. For instance, a human might be interested in all
GeoEvents issued in the city center of Aachen and would be able to express this
need by addresses or postal codes. Furthermore, other types of spatial relations such
as directional or distance relations might be useful. A "nearby" relation for example
can be reasonable in certain applications. For the temporal filtering mechanism we
can think of providing support for more colloquial expressions such as "every Monday",
too. In fact, this can be already expressed by the supported cron expressions but it is
also only applicable with expert knowledge about the syntax and semantics. Also for
temporal relation, it holds that e.g. distance relations can be fruitful.

A general future feature of the GeoMQTT mechanism could be updating GeoSub-
scriptions. Usually, a GeoSubscription is made once by a client. The subscriber
can unsubscribe to it, but cannot update it by e.g. an alternative geometry in the
spatial filter. But especially the updating of a geometry for filtering is beneficial and
mandatory in some cases. For example, a moving entity such as a car subscribes
spatially with a GeoSubscription to every GeoEvents that occurs in its surrounding. If
the entity moves, the geometry of the spatial filter representing its surrounding must
be updated frequently. Currently, subscribers have to unsubscribe first and, subse-
quently, renew their GeoSubscriptions. An efficient mechanism and/or message type
for updating GeoSubscriptions could avoid this additional effort.

Also the current implementation of the GeoMQTT protocol can be improved. This
starts with the efficient storage and evaluation of GeoSubscription, to advanced
security issues such as topic specific authorization and continues with GeoMQTT
clients written in programming languages to connect also other tools or other things
to the Geospatial IoT. Furthermore, we implemented the GeoMQTT extension based
on MQTT Version 3.1.1. In the meantime in March 2019, MQTT Version 5.0 was
released by its standardization organization as an OASIS standard. It introduces

230 7. CONCLUSION & FUTURE WORK

advanced functionalities and message types in the protocol. A migration of the
GeoMQTT extension to MQTT Version 5.0 in the near future seems reasonable.

GEOMQTT EVALUATION

Our methodology involved the conceptualization of an architecture, the implementa-
tion with GeoMQTT protocol and, the evaluation of the protocol against the raised
requirements. This evaluation was realized in two phases, first the modeling expres-
siveness and size of the GeoMQTT messages based on constructed IoT scenarios
were investigated and, secondly, the efficiency and scalability of the GeoMQTT bro-
ker were assessed. For both phases, further evaluations in the future are needed. In
case of modeling real-world geospatial events and states we saw that other geospa-
tial scenarios than the assessed ones can be found, in which the expressiveness
of the message types is brought to its limits. This includes use cases, in which
additional spatial properties are of main interest. Identifying these real-world use
cases through advanced evaluation steps should improve also the modeling of the
data types in the architecture. This also carries weight for the sizes of the GEOPUBLISH
and GEOSUBSCRIBE packets, which should then be investigated further.

The stress test we conducted to assess the efficiency and the scalability in the
second phase of the evaluation show already interesting results. However, in the test
plans we evaluated the efficiency by setting fixed test parameters. The throughput
of messages per second and the number of subscribers were not modified during
the execution of the test plan itself. These are non-realistic scenarios since during
operating time the combination of clients connecting, disconnecting, subscribing
or publishing is highly variable. In our test plans we mainly tested for the peak
performance of the GeoMQTT broker. In real applications, messages are distributed
in a more random fashion. In the future, we think that it would be more reasonable to
test the system with realistic loads. Scientific approaches such as the queuing theory
could be applied to simulate incoming and outgoing messages in a realistic way. It
also would make sense to construct several scenarios and requirements for different
IoT applications. For instance, in an early-warning system the message throughput
and requirements probably totally differ from these in time-uncritical applications.
Prospective evaluations should take these differentiations into account.

Also the scalability test can be extended in the future. We evaluated if the efficiency
in terms of message throughput can be increased by deploying a GeoMQTT broker
cluster. The tests with two brokers were promising and we could clearly prove that the
performance in contrast to a single broker can be increased by employing a cluster.
Further tests should investigate to which factor this scaling is employable. The
performance improvement depending on the replication factor should subsequently
be determined.

7. CONCLUSION & FUTURE WORK 231

GEOMQTT INFORMATION AND SERVICES

In addition, several related GeoMQTT information and services applications should
be developed to provide assess points or adapters to software and standards for out
Geospatial IoT architecture. This includes the integration of the protocol into newer
standards of the IoT and the geospatial world. For instance, we introduced in the
fundamentals chapter the SensorThings API and the Publish/Subscribe interface
standard of the OGC. Both standards use already publish/subscribe mechanisms.
Hence, integrating GeoMQTT as an extension to the used protocols would be straight-
forward.

A more general improvement poses the introduction of a name service for topics. In
EDAs every consumer participating in the system should understand the messages
that are exchanged. A business lexicon or an ontology is therefore a mandatory
concept for these systems. In our proposed architecture with GeoEvents as a basis
concept and GeoMQTT as an implementation of it, this cannot be ensured currently.
Especially the topic name and the payload of the GEOPUBLISH and PUBLISH packets
are arbitrary strings, respectively arbitrary data. To understand the topic name and
the content of the payload, a client must know the semantic meaning of both. In the
newer MQTT Version 5.0, this issue is partly tackled by including an optional MIME
content type in each message to describe the content of the payload. However, for
applications a semantic service for topic names and the data would be beneficial. This
would facilitate the understanding of the structure of the topic names, the underlying
ontology and the corresponding messages.

Finally, advanced applications involving processing and visualization capabilities in
the GeoEvent-based architecture for the Geospatial IoT should be implemented. For
instance, an IoT dashboard framework with an integrated WebGIS for visualizing
GeoEvents or GeoStreams in real-time could give a sophisticated access points
to the architecture for human clients. The technology for receiving and publishing
GeoEvents from a browser is already implemented with the JavaScript client using
WebSockets. Currently however, it is only used for demos or smaller web applications.
An adaptable thick client with rich functionalities in form of a dashboard could be used
to prototype applications resting on the proposed architecture quickly. Also we can
think about implementing other applications with connecting factors to the geospatial
domain. These include applications in related domains such as the industry 4.0,
Building Information Modeling (BIM) or UAVs.

232 7. CONCLUSION & FUTURE WORK

BIBLIOGRAPHY

Abel, D. J., Taylor, K., Ackland, R., & Hungerford, S. (1998), “An exploration of
GIS architectures for internet environments,” Computers, Environment and Urban
Systems, 22, 7–23.

Aceves, E. & Larios, V. M. (2012), “Data Visualization for Georeferenced IoT Open
Data Flows for a GDL Smart City Pilot,” IEEE-GDL CCD smart cities white paper,
1–5.

Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002a), “A Survey on
Sensor Networks,” IEEE Communications Magazine, 40, 102–114.

Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002b), “Wireless sensor
networks: a survey,” Computer Networks, 38, 393–422.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015),
“Internet of things: A Survey on Enabling Technologies, Protocols, and Applications,”
IEEE Communications Surveys and Tutorials, 17, 2347–2376.

Alkhatib, H., Faraboschi, P., Frachtenberg, E., Kasahara, H., Lange, D., Laplante, P.,
Merchant, A., Milojicic, D., & Schwan, K. (2014), “IEEE CS 2022 Report,” IEEE
Computer Society.

Allen, J. (1983), “Maintaining Knowledge about Temporal Intervals,” Communications
of the ACM, 26, 832–843.

Allen, J. F. (1984), “Towards a General Theory of Action and Time,” Artificial Intelli-
gence, 23, 123–154.

Alonso, L., Barbarán, J., Chen, J., Díaz, M., Llopis, L., & Rubio, B. (2018), “Middle-
ware and communication technologies for structural health monitoring of critical
infrastructures: A survey,” Computer Standards and Interfaces, 56, 83–100.

Alspaugh, T. A. (2019), “Allen’s Interval Algebra,” available at https://www.ics.uci.
edu/{~}alspaugh/cls/shr/allen.html (Accessed: 2019-05-15).

Appice, A., Ciampi, A., Fumarola, F., & Malerba, D. (2014), Data Mining Techniques
in Sensor Networks : Summarization, Interpolation and Surveillance, London:
Springer.

https://www.ics.uci.edu/{~}alspaugh/cls/shr/allen.html
https://www.ics.uci.edu/{~}alspaugh/cls/shr/allen.html

234 BIBLIOGRAPHY

Asahara, A., Shibasaki, R., Ishimaru, N., & Burggraf, D. (2015a), “OGC Moving
Features Encoding Part II: Simple CSV 1.0,” OGC® Implementation Standard,
OGC 14-084, 1–26.

Asahara, A., Shibasaki, R., Ishimaru, N., & Burggraf, D. (2015b), “OGC® Moving
Features Encoding Part I: XML Core,” OGC® Implementation Standard, OGC
14-083.

Ashton, K. (2009), “That ’Internet of Things’ Thing,” available at https://www.
rfidjournal.com/articles/view?4986 (Accessed: 2019-05-15).

Augustin, A., Yi, J., Clausen, T., & Townsley, W. M. (2016), “A Study of LoRa: Long
Range & Low Power Networks for the Internet of Things,” Sensors, 16, 1–18.

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002), “Models and
Issues in Data Stream Systems,” in: Proceedings of the 21st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pp. 1–30.

Balshe, M., Peon, R., & Thomson, M. (2015), “Hypertext Transfer Protocol Version 2
(HTTP/2),” IETF Standards Track, RFC 7540.

Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R., & Sturman,
D. (1999), “An Efficient Multicast Protocol for Content-Based Publish-Subscribe
Systems,” Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems, 262–272.

Banks, A., Briggs, E., Borgendale, K., & Gupta, R. (2019), “MQTT Version 5.0,”
OASIS Standard.

Banks, A. & Gupta, R. (2014), “MQTT Version 3.1.1,” OASIS Standard.

Beard, K. (2006), “Modelling Change in Space and Time: An Event-Based Approach,”
in: Drummond, J., Billen, R., Joao, E., & Forrest, D. (eds.): Dynamic and Mobile
GIS: Investigating Changes in Space and Time, Boca Raton: CRC Press, 1st ed.,
pp. 55–76.

Beinat, E., Steenbruggen, J., & Wagtendonk, A. (2007), “Location Awareness 2020:
A foresight study on location and sensor services,” Vrije Universiteit, Spatial Infor-
mation Laboratory (SPINlab), Amsterdam.

Bendel, S., Springer, T., Schuster, D., Schill, A., Ackermann, R., & Ameling, M.
(2013), “A Service Infrastructure for the Internet of Things based on XMPP,” in:
2013 IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), pp. 385–388.

Benoit, L., Briole, P., Martin, O., Thom, C., Malet, J. P., & Ulrich, P. (2015), “Monitoring
landslide displacements with the Geocube wireless network of low-cost GPS,”
Engineering Geology, 195, 111–121.

https://www.rfidjournal.com/articles/view?4986
https://www.rfidjournal.com/articles/view?4986

BIBLIOGRAPHY 235

Bensky, A. (2016), Wireless Positioning Technologies and Applications, London:
Artech House Publishers, 2nd ed.

Berners-Lee, T., Fielding, R., & Frystyk, H. (1996), “Hypertext Transfer Protocol –
HTTP/1.0,” Network Working Group Memo, RFC 1945.

Bifet, A. & Kirkby, R. (2009), “Data Stream Mining. A Practical Approach,” University
of Waikato, Hamilton.

Bigagli, L. & Rieke, M. (2017), “The new OGC Publish/Subscribe Standard - applica-
tions in the Sensor Web and the Aviation domain,” Open Geospatial Data, Software
and Standards, 2, 1–10.

Bill, R. (2016), Grundlagen der Geo-Informationssysteme, Berlin: Wichmann Verlag,
6th ed.

Blankenbach, J. (2007), Handbuch der mobilen Geoinformation: Architektur und
Umsetzung mobiler standortbezogener Anwendungen und Dienste unter Berück-
sichtigung von Interoperabilität, Heidelberg: Wichmann Verlag.

Bonomi, F., Milito, R., Natarajan, P., & Zhu, J. (2014), “Fog Computing: A Platform for
Internet of Things and Analytics,” in: Bessis, N. & Dobre, C. (eds.): Big Data and
Internet of Things: A Roadmap for Smart Environments. Studies in Computational
Intelligence, Springer, vol. 546, heidelberg ed., pp. 169–186.

Botts, M., Percivall, G., Reed, C., & Davidson, J. (2007), “OGC Sensor Web Enable-
ment: Overview and High Level Architecture. - Version 3,” OpenGIS® White Paper,
OGC 07-165.

Botts, M., Percivall, G., Reed, C., & Davidson, J. (2008), “OGC® Sensor Web
Enablement: Overview and High Level Architecture,” in: Nittel, S., Labrinidis, A.,
& Stefanidis, A. (eds.): GeoSensor Networks: Second International Conference,
GSN 2006, Boston, MA, USA, October 1-3, 2006, Revised Selected and Invited
Papers, pp. 175–190.

Botts, M. & Robin, A. (2014), “OGC SensorML: Model and XML Encoding Standard -
Version 2.0,” OGC® Encoding Standard, OGC 12-000.

Bouguera, T., Diouris, J. F., Chaillout, J. J., Jaouadi, R., & Andrieux, G. (2018),
“Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN,”
Sensors, 18, 1–23.

Boyd, J. R. (1987), A Discourse on Winning and Losing, Maxwell: Air University
Press.

Braden, S. E. (2015), “An Open Source Alternative for Crater Counting Using QGIS
and the CircleCraters Plugin,” in: 46th Lunar and Planetary Science Conference,
pp. 1–2.

236 BIBLIOGRAPHY

Braeckel, A. & Bigagli, L. (2016), “OGC Publish/Subscribe Interface Standard 1.0,
SOAP Protocol Binding Extension,” OGC® Implementation Standard, OGC 13-133.

Braeckel, A., Bigagli, L., & Echterhoff, J. (2016), “OGC® Publish/Subscribe Interface
Standard 1.0 - Core,” OGC® Implementation Standard, OGC 13-131.

Brand, K., Blankenbach, J., & Kolbe, T. (2017), Leitfaden – Mobile GIS . Von der
GNSS-basierten Datenerfassung bis zu Mobile Mapping. Version 3.0, München:
Selbstverlag, Runder Tisch GIS e.V, 6th ed.

Bröring, A. (2012), “Automated On-the-fly Integration of Geosensors with the Sensor
Web,” Ph.d. thesis, University of Twente.

Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S.,
& Lemmens, R. (2011), “New generation Sensor Web Enablement.” Sensors, 11,
2652–2699.

Bröring, A., Foerster, T., Jirka, S., & Priess, C. (2010), “Sensor Bus: An Intermediary
Layer for Linking Geosensors and the Sensor Web,” in: COM.Geo ’10 Proceedings
of the 1st International Conference and Exhibition on Computing for Geospatial
Research and Application, pp. 1–8.

Bröring, A., Stasch, C., & Echterhoff, J. (2012), “OGC Sensor Observation Service
Interface Standard - Version 2.0,” OpenGIS® Implementation Standard, OGC
12-006.

Bukhsh, Z. A., van Sinderen, M., & Singh, P. M. (2015), “SOA and EDA: A Compar-
ative Study. Similarities, Differences and Conceptual Guidelines on their usage,”
in: 12th International Joint Conference on e-Business and Telecommunications
(ICETE), pp. 213–220.

Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., & Srivastava,
M. B. (2006), “Participatory Sensing,” available at https://escholarship.org/
uc/item/19h777qd (Accessed: 2019-02-20).

Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., & Schaub, T. (2016), “The
GeoJSON Format,” IETF Standards Track, RFC 7946.

Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub, T., & Schmidt, C. (2008), “The GeoJ-
SON Format Specification,” available at http://geojson.org/geojson-spec (Ac-
cessed: 2018-11-20).

Campelo, C. E. & Bennett, B. (2013), “Representing and Reasoning about Changing
Spatial Extensions of Geographic Features,” in: Tenbrink, T., Stell, J., Galton, A., &
Z, W. (eds.): Spatial Information Theory. COSIT 2013. Lecture Notes in Computer
Science, Springer, Cham, vol. 8116, pp. 33–52.

https://escholarship.org/uc/item/19h777qd
https://escholarship.org/uc/item/19h777qd
http://geojson.org/geojson-spec

BIBLIOGRAPHY 237

Cannata, M., Antonovic, M., Molinari, M., & Pozzoni, M. (2014), “istSOS, Sensor Ob-
servation Management System: a Real Case Application of Hydro-Meteorological
Data for Flood Protection,” ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XL-5/W3, 111–117.

Casals, L., Mir, B., Vidal, R., & Gomez, C. (2017), “Modeling the Energy Performance
of LoRaWAN,” Sensors, 17, 1–30.

Čepický, J. & De Sousa, L. M. (2016), “New implementation of OGC Web Processing
Service in Python programming language. PyWPS-4 and issues we are facing with
processing of large raster data using OGC WPS,” ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B7,
927–930.

Chatzimilioudis, G., Konstantinidis, A., Laoudias, C., & Zeinalipour-yazti, D. (2012),
“Crowdsourcing with Smartphones,” IEEE Internet Computing, 16, 36–44.

Chen, L. & Shang, S. (2018), “Approximate spatio-temporal top-k publish/subscribe,”
World Wide Web - Special Issue on Big Data Management and Intelligent Analytics,
1–23.

Chen, X., Chen, Y., & Rao, F. (2003), “An Efficient Spatial Publish/Subscribe System
for Intelligent Location-Based Services,” Proceedings of the 2nd international
workshop on Distributed event-based systems, 1–6.

Chen, Y. & Kunz, T. (2016), “Performance Evaluation of IoT Protocols under a
Constrained Wireless Access Network,” in: 2016 International Conference on
Selected Topics in Mobile Wireless Networking (MoWNeT), pp. 1–7.

Cheng, B., Zhu, D., Zhao, S., & Chen, J. (2016), “Situation-Aware IoT Service Coordi-
nation Using the Event-Driven SOA Paradigm,” IEEE Transactions on Network and
Service Management, 13, 349–361.

Cisneros, J. A. (2007), “Maintenance of the Convex Hull of a Dynamic Set,” Master
thesis, University of Edinburgh.

Claramunt, C. & Theriault, M. (1995), “Managing Time in GIS An Event-Oriented
Approach,” in: Clifford, J. & Tuzhilin, A. (eds.): Recent Advances in Temporal
Databases, pp. 23–42.

Clementini, E. & Di Felice, P. (1995), “A Comparison of Methods for Representing
Topological Relationships,” Information Sciences, 3, 149–178.

Clementini, E., Felice, P., & Oosterom, P. (1993), “A Small Set of Formal Topological
Relationships Suitable for End-User Interaction,” in: Abel, D. & Chin Ooi, B. (eds.):
Advances in Spatial Databases - Proceedings of Third International Symposium,
SSD ’93, Berlin, Heidelberg: Springer, pp. 277–295.

238 BIBLIOGRAPHY

Collina, M., Corazza, G. E., & Vanelli-Coralli, A. (2012), “Introducing the QEST broker:
Scaling the IoT by bridging MQTT and REST,” in: 2012 IEEE 23rd International
Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), pp.
36–41.

Cope, S. (2019), “Using MQTT Over WebSockets with Mosquitto,” available at http:
//www.steves-internet-guide.com/mqtt-websockets/ (Accessed: 2019-02-
06).

Cox, S. (2011), “Open Geospatial Consortium - Observations and Measurements -
XML Implement - Version 2.0,” OGC® Implementation, OGC 10-025.

Cox, S. (2013), “OGC Abstract Specification Geographic information — Observations
and measurements - Version 2.0,” OGC® Standard: Abstract Specification, OGC
10-004.

Crocker, D. (1982), “Standard for the Format of ARPA Internet Text Messages,” RFC
822.

Curry, E. (2004), “Message-Oriented Middleware,” in: Mahmoud, Q. (ed.): Middleware
for Communications, New Jersey: John Wiley & Sons Inc, pp. 1–28.

Curry, E., Derguech, W., Hasan, S., Kouroupetroglou, C., & ul Hassan, U. (2019), “A
Real-time Linked Dataspace for the Internet of Things: Enabling “Pay-As-You-Go”
Data Management in Smart Environments,” Future Generation Computer Systems,
90, 405–422.

D’Ambrosia, J. (2018), “IEEE 802 LAN/MAN Standards Committee,” available at http:
//www.ieee802.org/ (Accessed: 2019-01-08).

Dangermond, J. (2017), “Five GIS Trends Changing the World according to Jack
Dangermond, President of Esri,” Geoawesomeness, online.

Davis, M. (2007), “Quirks of the "Contains" Spatial Predicate,”
available at http://lin-ear-th-inking.blogspot.com/2007/06/
subtleties-of-ogc-covers-spatial.html (Accessed: 2018-11-20).

Dawson, F. & Stenerson, D. (1998), “Internet Calendaring and Scheduling Core
Object Specification (iCalendar),” Network Working Group Standards Track, RFC
2445.

Doyle, A. (2000), “OpenGIS® Web Map Server Interface,” OGC® Implementation
Specification, OGC 00-028.

Duarte, L., Silva, P., & Teodoro, A. C. (2018), “Development of a QGIS Plugin to
Obtain Parameters and Elements of Plantation Trees and Vineyards with Aerial
Photographs,” ISPRS International Journal of Geo-Information, 7, 1–20.

http://www.steves-internet-guide.com/mqtt-websockets/
http://www.steves-internet-guide.com/mqtt-websockets/
http://www.ieee802.org/
http://www.ieee802.org/
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

BIBLIOGRAPHY 239

Duquennoy, S., Grimaud, G., & Vandewalle, J.-J. (2009), “The Web of Things :
interconnecting devices with high usability and performance,” in: ICESS 2009, May
2009, HangZhou, Chile., pp. 1–8.

Echterhoff, J. (2010), “OWS-7 Event Architecture Engineering Report Copyright,”
OGC Public Engineering Report, 10-060r1.

Echterhoff, J. & Everding, T. (2008), “OpenGIS Sensor Event Service Interface
Specification (proposed) - Version 0.3.0,” OpenGIS® Discussion Paper, OGC
08-133.

Echterhoff, J. & Everding, T. (2011), “OGC® Event Service - Review and Current
State,” OGC® Public Discussion Paper, 11-088r1.

Eclipse Foundation Inc. (2018a), “LocationTech JTS Topology Suite,” available
at https://projects.eclipse.org/projects/locationtech.jts (Accessed:
2019-02-08).

Eclipse Foundation Inc. (2018b), “Paho JavaScript Client,” available at https://
github.com/eclipse/paho.mqtt.javascript (Accessed: 2019-02-18).

Eclipse Foundation Inc. (2018c), “Paho Python Client,” available at https://github.
com/eclipse/paho.mqtt.python{#}more-information.

Egenhofer, M. J., Clarke, K. C., Gao, S., Quesnot, T., Franklin, W. R., Yuan, M., &
Coleman, D. (2016), “Contributions of GIScience over the Past Twenty Years,” in:
Onsrud, H. & Kuhn, W. (eds.): Advancing Geographic Information Science: The
Past and NExt Twenty Years, Needham: GSDI Association Press, pp. 9–34.

Egenhofer, M. J. & Franzosa, R. D. (1991), “Point-set topological spatial relations,”
International Journal of Geographical Information Systems, 5, 161–174.

Egenhofer, M. J. & Herring, J. R. (1991), “A Mathematical Framework for the Defini-
tion of Topological Relationships,” 4th International Symposium on Spatial Data
Handling, 2, 803–813.

Egenhofer, M. J., Sharma, J., & Mark, D. M. (1993), “A Critical Comparison of the
4-Intersection and 9-Intersection Models for Spatial Relations: Formal Analysis,” in:
McMaster, R. & Armstrong, M. (eds.): Proceedings of AutoCarto 11, pp. 1–12.

Ericsson (2011), “More than 50 Billion Connected Devices,” Ericsson White Paper.

Eugster, P. (2007), “Type-Based Publish/Subscribe: Concepts and Experiences,”
ACM Transactions on Programming Languages and Systems, 29, 1–50.

Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003), “The many
faces of publish/subscribe,” ACM Computing Surveys, 35, 114–131.

https://projects.eclipse.org/projects/locationtech.jts
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.javascript
https://github.com/eclipse/paho.mqtt.python{#}more-information
https://github.com/eclipse/paho.mqtt.python{#}more-information

240 BIBLIOGRAPHY

Eugster, P. T., Guerraoui, R., & Damm, C. H. (2001), “On Objects and Events,” in: Pro-
ceedings of the 16th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA), pp. 254–269.

Everding, T. & Echterhoff, J. (2008), “Event Pattern Markup Language (EML) - Version
0.3.0,” OGC© Discussion Paper, OGC 08-132.

Fazio, M. & Puliafito, A. (2015), “Cloud4sens: a cloud-based architecture for sensor
controlling and monitoring,” IEEE Communications Magazine, 53, 41–47.

Fette, I. & Melnikov, A. (2011), “The WebSocket Protocol,” IETF Standards Track,
RFC 6455.

Few, S. (2006), Information Dashboard Design: The Effective Visual Communication
of Data, Sebastopol: O’Reilly Media, Inc., 3rd ed.

Fielding, R. T. (2000), “Architectural Styles and the Design of Network-based Software
Architectures,” Ph.d. thesis, University of California.

Filipponi, L., Vitaletti, A., Landi, G., Memeo, V., Laura, G., & Pucci, P. (2010),
“Smart City: An Event Driven Architecture for Monitoring Public Spaces with
Heterogeneous Sensors,” in: Proceedings of the 4th International Conference on
Sensor Technologies and Applications (SENSORCOMM), IEEE, pp. 281–286.

Foerster, T., Baranski, B., & Borsutzky, H. (2012), “Live Geoinformation with Stan-
dardized Geoprocessing Services,” in: Gensel, J., Josselin, D., & Vandenbroucke,
D. (eds.): Bridging the Geographic Information Sciences, International AGILE’2012
Conference, Avignon (France), April, 24-27, 2012, Berlin, Heidelberg: Springer, pp.
99–118.

Galton, A. (2004), “Fields and Objects in Space, Time, and Space-time,” Spatial
Cognition and Computation, 4, 39–68.

Galton, A. (2009), “Spatial and temporal knowledge representation,” Earth Science
Informatics, 2, 169–187.

Galton, A. (2015), “Outline of a Formal Theory of Processes and Events, and Why
GIScience Needs One,” in: Proceedings of the 12th International Conference on
Spatial Information Theory (COSIT), New York: Springer, pp. 3–22.

Galton, A. (2016), “The Ontology of Time and Process,” in: 3rd Interdisciplinary
School on Applied Ontology.

Galton, A. (2018), “Processes as Patterns of Occurrence,” in: Stout, R. (ed.): Process,
Action, and Experience, Oxford: Oxford University Press, pp. 41–57.

Gartner (2017), “Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017,
Up 31 Percent From 2016,” Press Release.

BIBLIOGRAPHY 241

Geipel, J., Jackenkroll, M., Weis, M., & Claupein, W. (2015), “A Sensor Web-
Enabled Infrastructure for Precision Farming,” ISPRS International Journal of
Geo-Information, 4, 385–399.

GeoTools (2017), “GeoTools Documentation,” available at http://geotools.
org/ (Accessed: 2019-02-08).

Gessler, R. & Krause, T. (2015), Wireless-Netzwerke für den Nahbereich: Einge-
bettete Funksysteme: Vergleich von standardisierten und prorietären Verfahren,
Wiesbaden: Springer Vieweg, 2nd ed.

Ghobakhlou, A., Sallis, P., & Wang, X. (2014), “A Service Oriented Wireless Sensor
Node Management System,” in: Proceedings of the IEEE International Instrumen-
tation and Measurement Technology Conference (I2MTC), pp. 1475–1479.

Gibbons, P. B., Karp, B., Ke, Y., & Nath, S. (2003), “IrisNet : An Architecture for a
World-Wide Sensor Web,” IEEE Pervasive Computing, 2, 22–33.

Glabsch, J., Hesse, C., Heunecke, O., Keller, F., & Schuhbäck, S. (2011), “Kosten-
effizientes Geo-Monitoring von Hochwasserschutzanlagen und Bauwerken mit
GPS/GNSS-Sensornetzen,” in: Exhibition and International Conference on Climate
Impact. Acqua alta, Hamburg.

Godfrey, R., Ingham, D., & Schloming, R. (2012), “OASIS Advanced Message
Queuing Protocol (AMQP) Version 1.0,” OASIS Standard.

Goodchild, M. F. (2007), “Citizens as sensors: the world of volunteered geography,”
GeoJournal, 69, 211–221.

Goodchild, M. F. (2010), “Twenty years of progress: GIScience in 2010,” Journal of
Spatial Information Science, 1, 3–20.

Google Developers (2018), “Protocol Buffers,” available at https://developers.
google.com/protocol-buffers/ (Accessed: 2018-11-20).

Gorlatova, M., Sarik, J., Grebla, G., Cong, M., Kymissis, I., & Zussman, G. (2015),
“Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things,” IEEE
Journal on Selected Areas in Communications, 33, 1624–1639.

Grenon, P. & Smith, B. (2004), “SNAP and SPAN: Towards Dynamic Spatial Ontology,”
Spatial cognition and computation, 1, 69–103.

Gross, N. (1999), “The Earth Will Don An Electronic Skin,” avail-
able at https://www.bloomberg.com/news/articles/1999-08-29/
14-the-earth-will-don-an-electronic-skin (Accessed: 2019-05-15).

Grothe, C. (2010), “An Aeronautical Publish / Subscribe System Employing Imperfect
Spatiotemporal Filters,” Ph.d. thesis, Technische Universität Darmstadt.

http://geotools.org/
http://geotools.org/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.bloomberg.com/news/articles/1999-08-29/14-the-earth-will-don-an-electronic-skin
https://www.bloomberg.com/news/articles/1999-08-29/14-the-earth-will-don-an-electronic-skin

242 BIBLIOGRAPHY

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013), “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future Generation
Computer Systems, 29, 1645–1660.

Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., & Savio, D. (2010a), “Interacting with
the SOA-Based Internet of Things: Discovery, Query, Selection, and On-Demand
Provisioning of Web Services,” IEEE Transactions on Services Computing, 3,
223–235.

Guinard, D., Trifa, V., Mattern, F., & Wilde, E. (2011), “From the Internet of Things
to the Web of Things : Resource Oriented Architecture and Best Practices,” in:
Uckelmann, D., Harrison, M., & Michahelles, F. (eds.): Architecting the Internet of
Things, Berlin Heidelberg: Springer, pp. 97–129.

Guinard, D., Trifa, V., & Wilde, E. (2010b), “A Resource Oriented Architecture for the
Web of Things,” in: Proceedings of 2010 Internet of Things (IOT), IoT for a green
Planet, pp. 1–8.

Gutierrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gandara, M. A. (2014),
“Automated Irrigation System Using a Wireless Sensor Network and GPRS Module,”
IEEE Transactions on Instrumentation and Measurement, 63, 166–176.

Güting, R. H. & Schneider, M. (2005), Moving Objects Databases, Morgan Kaufmann
Publishers.

Hakiri, A., Berthou, P., Gokhale, A., & Abdellatif, S. (2015), “Publish/Subscribe-
Enabled Software Defined Networking for Efficient and Scalable IoT Communica-
tions,” IEEE Communications Magazine, 53, 48–54.

Haklay, M., Mazumdar, S., & Wardlaw, J. (2018), “Citizen Science for Observing and
Understanding the Earth,” in: Mathieu, P.-P. & Aubrecht, C. (eds.): Earth Observa-
tion Open Science and Innovation, Cham: Springer International Publishing, pp.
69–88.

Haller, S. (2010), “The Things in the Internet of Things,” in: Proceedings of Internet
of Things Conference 2010.

Hartke, K. (2015), “Observing Resources in the Constrained Application Protocol
(CoAP),” IETF Standards Track, RFC 7641.

He, S. & Chan, S. H. (2016), “Wi-Fi Fingerprint-Based Indoor Positioning: Recent
Advances and Comparisons,” IEEE Communications Surveys and Tutorials, 18,
466–490.

Herle, S., Becker, R., & Blankenbach, J. (2016a), “Bridging GeoMQTT and REST,”
in: Proceedings of the Geospatial Sensor Webs Conference 2016, August 29 - 31,
2016, Münster.

BIBLIOGRAPHY 243

Herle, S., Becker, R., & Blankenbach, J. (2016b), “Smart sensor-based geospatial
architecture for Dike Monitoring,” IOP Conference Series: Earth and Environmental
Science, 34.

Herle, S., Becker, R., Blankenbach, J., Quadflieg, T., & Schüttrumpf, H. (2018),
“Dateninfrastruktur für ein kontinuierliches echtzeitfähiges Geomonitoring,” in:
Busch, W. (ed.): Tagungsband GeoMonitoring 2018, Clausthal-Zellerfeld, pp. 1–14.

Herle, S. & Blankenbach, J. (2016), “GeoPipes using GeoMQTT,” in: Sarjakoski,
T., Santos, M. Y., & Sarjakoski, T. (eds.): Geospatial Data in a Changing World:
Selected papers of the 19th AGILE Conference on Geographic Information Science,
Cham: Springer International Publishing, pp. 383–398.

Herle, S. & Blankenbach, J. (2017), “Enhancing the OGC WPS interface with
GeoPipes support for real-time geoprocessing,” International Journal of Digital
Earth, 11, 48–63.

Herring, J. R. (2011), “OpenGIS Implementation Standard for Geographic information
- Simple feature access - Part 1: Common architecture - Version 1.2.1,” OpenGIS®
Implementation Standard, 06-103r4.

Hill, L. L. (2006), Georeferencing: The Geographic Associations of Information,
Cambridge: MIT Press.

Hochschild, M. (2019), “Time4J,” available at https://github.com/MenoData/
Time4J (Accessed: 2019-02-08).

Hohpe, G. & Woolf, B. (2003), Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions, Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

Hornsby, A. & Bail, E. (2009), “µXMPP: Lightweight Implementation for Low Power
Operating System Contiki,” in: Proceedings of the International Conference on
Ultra Modern Telecommunications and Workshops, IEEE, pp. 1–5.

Hornsby, K. & Egenhofer, M. J. (2000), “Identity-based change: A foundation for
spatio-temporal knowledge representation,” International Journal of Geographical
Information Science, 14, 207–224.

Hornsby, K. S. & Cole, S. (2007), “Modeling moving geospatial objects from an
event-based perspective,” Transactions in GIS, 11, 555–573.

Horton, M. & Adams, R. (1987), “Standard for Interchange of USENET Messages,”
Network Working Group Memo, RFC 1036.

Huang, C. (2014), “GeoPubSubHub: A Geospatial Publish/Subscribe Architecture for
the World-Wide Sensor Web,” Ph.d. thesis, University of Calgary.

https://github.com/MenoData/Time4J
https://github.com/MenoData/Time4J

244 BIBLIOGRAPHY

Hui, J. & Thubert, P. (2011), “Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks,” IETF Standards Track, RFC 6282, 1–24.

Huisman, O. & de By, R. A. (eds.) (2009), Principles of Geographic Information
Systems: an introductory textbook, Enschede: ITC, 4th ed.

Hunkeler, U., Truong, H. L., & Stanford-Clark, A. (2008), “MQTT-S — A Publish/Sub-
scribe Protocol for Wireless Sensor Networks,” Proceedings of the 3rd International
Conference on Communication Systems Software and Middleware and Workshops
(COMSWARE ’08), 791–798.

Ibarra-Esquer, J. E., González-Navarro, F. F., Flores-Rios, B. L., Burtseva, L., &
Astorga-Vargas, M. A. (2017), “Tracking the Evolution of the Internet of Things
Concept Across Different Application Domains,” Sensors, 17, 1–24.

IBM & Eurotech (2010), “MQTT V3.1 Protocol Specification,” Eurotech, IBM.

Isikdag, U. & Pilouk, M. (2016), “Integration of Geo-Sensor Feeds and Event Con-
sumer Services for Real-Time Representation of IoT Nodes,” ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, XLI-B4, 267–274.

ISO/IEC JTC (2013), “Information technology - Telecommunications and information
exchange between systems - Near Field Communication - Interface and Protocol
(NFCIP-1),” ISO/IEC Standard, 18092.

ISO/IEC JTC 1 (1994), “Information technology – Open Systems Interconnection –
Basic Reference Model: The Basic Model,” ISO Standard, 7498-1.

ISO/IEC JTC 1 (2014), “Information technology – Advanced Message Queuing
Protocol (AMQP) v1.0 specification,” ISO/IEC Standard, 19464.

ISO/IEC JTC 1 (2016), “Information technology – Message Queuing Telemetry
Transport (MQTT) v3.1.1,” ISO/IEC Standard, 20922.

ISO/TC 154 (2004), “Data elements and interchange formats – Information inter-
change – Representation of dates and times,” ISO Standard, 8601.

ISO/TC 211 (2007a), “Geographic information – Spatial referencing by coordinates,”
ISO Standard, 19111.

ISO/TC 211 (2007b), “Geoinformation – Geography Markup Language (GML),” ISO
Standard, 19136.

ISO/TC 211 (2015), “Geographic information – Well-known text representation of
coordinate reference systems,” ISO Standard, 19162.

BIBLIOGRAPHY 245

ISO/TC 268 (2018), “Sustainable cities and communities - Guidance on establishing
smart city operating models for sustainable communities,” ISO Standard, 37106.

ITU (2005), “The Internet of Things,” ITU Internet Reports.

ITU-T (2012), “Overview of the Internet of Things,” Global information infrastructure,
Internet protocol aspects, next-generation networks, Internet of Things and smart
cities, Y.2060.

Jazayeri, M. A., Liang, S. H., & Huang, C. Y. (2015), “Implementation and Evaluation
of Four Interoperable Open Standards for the Internet of Things,” Sensors, 15,
24343–24373.

Jin, B. & Chen, H. (2010), “Spatio-Temporal Events in the Internet of Things,” in:
Proceedings of the 8th International Conference on Embedded and Ubiquitous
Computing (EUC), pp. 353–358.

Jin, B., Zhuo, W., Hu, J., Chen, H., & Yang, Y. (2013), “Specifying and detecting
spatio-temporal events in the internet of things,” Decision Support Systems, 55,
256–269.

Jirka, S., Bröring, A., & Stasch, C. (2009), “Discovery mechanisms for the sensor
web.” Sensors, 9, 2661–2681.

Johnston, S. & Cox, S. (2017), “The Raspberry Pi: A Technology Disrupter, and the
Enabler of Dreams,” Electronics, 6, 1–7.

Kamilaris, A. & Ostermann, F. (2018), “Geospatial Analysis and the Internet of Things,”
ISPRS International Journal of Geo-Information, 7, 1–22.

Kamiya, T. (2018), “Efficient Extensible Interchange Working Group,” available
at https://www.w3.org/XML/EXI/ (Accessed: 2019-05-15).

Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., & Alonso-Zarate, J. (2015), “A
Survey on Application Layer Protocols for the Internet of Things,” Transaction on
IoT and Cloud Computing, 3, 11–17.

Kim, K.-S. & Ogawa, H. (2017), “OGC Moving Features Encoding Extension - JSON -
Version 1.0,” OGC® Best Practice, 16-140r1.

Kim, M.-S. (2018), “Research issues and challenges related to Geo-IoT platform,”
Spatial Information Research, 26, 113–126.

Kitchin, R. & McArdle, G. (2017), “Urban data and city dashboards: Six key issues,”
in: Kitchin, R., Lauriault, T., & McArdle, G. (eds.): Data and the City, London:
Routledge.

https://www.w3.org/XML/EXI/

246 BIBLIOGRAPHY

Klok, L., van der Mark, P., & Nieuwkoop, E. (2014), “Urbmobi - A Mobile Measure-
ment Device for Urban Environmental Monitoring,” in: Proceedings of the Third
International Conference on Countermeasures to Urban Heat Island (IC²UHI), pp.
1221–1230.

Klopfer, M. & Simonis, I. (eds.) (2009), Sany: an open architecture for sensor
networks, SANY Consortium.

Klyne, G. & Newman, C. (2002), “Date and Time on the Internet: Timestamps,”
Network Working Group Memo, RFC 3339.

Kmoch, A., Klug, H., White, P., & Reichel, S. (2016), “SensorWeb Semantics on
MQTT for responsive Rainfall Recharge Modelling,” in: Proceedings of the 19th
AGILE International Conference on Geographic Information Science, pp. 1–4.

Koster, M. (2013), “M2M Protocol Interoperability Using the Smart Ob-
ject API,” available at http://iot-datamodels.blogspot.com/2013/10/
m2m-protocol-interoperability-using.html (Accessed: 2019-05-15).

Kotsev, A., Pantisano, F., Schade, S., & Jirka, S. (2015), “Architecture of a Service-
Enabled Sensing Platform for the Environment,” Sensors, 15, 4470–4495.

Kreps, J. (2014), “Questioning the Lambda Architecture,” available at https://www.
oreilly.com/ideas/questioning-the-lambda-architecture (Accessed: 2019-
05-15).

Küpper, A. (2005), Location-Based Services: Fundamentals and Operation, Hoboken:
John Wiley & Sons.

Lan, L., Wang, B., Zhang, L., Shi, R., & Li, F. (2015), “An Event-driven Service-
oriented Architecture for the Internet of Things,” Proceedings of the Asia-Pacific
Services Computing Conference 2014 (APSCC 2014), 68–73.

Langran, G. (1990), “Temporal GIS design tradeoffs,” in: Journal of the Urban and
Regional Information Systems Association, pp. 16–25.

Laska, M., Herle, S., Klamma, R., & Blankenbach, J. (2018), “A Scalable Ar-
chitecture for Real-Time Stream Processing of Spatiotemporal IoT Stream
Data—Performance Analysis on the Example of Map Matching,” ISPRS Inter-
national Journal of Geo-Information, 7, 1–15.

Latvakoski, J., Iivari, A., Vitic, P., Jubeh, B., Alaya, M., Monteil, T., Lopez, Y., Talavera,
G., Gonzalez, J., Granqvist, N., Kellil, M., Ganem, H., & Väisänen, T. (2014), “A
Survey on M2M Service Networks,” Computers, 3, 130–173.

Lee, E. A. (2008), “Cyber Physical Systems: Design Challenges,” Proceedings of
the 11th IEEE Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 363–369.

http://iot-datamodels.blogspot.com/2013/10/m2m-protocol-interoperability-using.html
http://iot-datamodels.blogspot.com/2013/10/m2m-protocol-interoperability-using.html
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.oreilly.com/ideas/questioning-the-lambda-architecture

BIBLIOGRAPHY 247

Lee, G. M., Crespi, N., Choi, J. K., & Boussard, M. (2013), “Internet of Things,” in:
Bertin, E., Crespi, N., & Magedanz, T. (eds.): Evolution of Telecommunication Ser-
vices: The Convergence of Telecom and Internet: Technologies and Ecosystems,
Berlin, Heidelberg: Springer, vol. 7768, pp. 257–282.

Liang, Q., Nittel, S., Hahmann, T., Informatics, S., & Science, I. (2016a), “From Data
Streams to Fields: Extending Stream Data Models with Field Data Types,” in: Miller,
J. A., O’Sullivan, D., & Wiegand, N. (eds.): Geographic Information Science, Cham:
Springer International Publishing, vol. 9927, pp. 178–192.

Liang, S., Huang, C., & Khalafbeigi, T. (2016b), “OGC SensorThings API Part 1:
Sensing - Version 1.0,” OGC® Implementation Standard, 15-078r6.

Liang, S. & Khalafbeigi, T. (2019), “OGC SensorThings API Part 2 – Tasking Core -
Version 1.0,” OGC® Implementation Standard, 17-079r1.

Libelium (2018), “Waspmote Plug & Sense! Sensor Guide v7.5,” avail-
able at http://www.libelium.com/development/plug-sense/documentation/
waspmote-plug-sense-sensors-guide/ (Accessed: 2019-05-15).

Libelium (2019), “Waspmote,” available at http://www.libelium.com/products/
waspmote/ (Accessed: 2019-02-15).

Liebig, T. & Morik, K. (2013), “Insight: Report on end-user requirements, test data,
and on prototype definitions,” TU Dortmund and Insight Consortium Members.

Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017), “A Survey on
Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and
Applications,” IEEE Internet of Things Journal, 4, 1125–1142.

LocationTech (2016), “JTS Topology Suite - Features,” available at https://
locationtech.github.io/jts/jts-features.html (Accessed: 2019-05-15).

Logre, I., Mosser, S., Collet, P., & Riveill, M. (2014), “Sensor Data Visualisation:
A Composition-Based Approach to Support Domain Variability,” in: Cabot, J. &
Rubin, J. (eds.): Modelling Foundations and Applications. Proceedings of the 10th
European Conference (ECMFA 2014), Cham: Springer, pp. 101–116.

Lopez, M. A., Lobato, A., & Duarte, O. C. M. B. (2016), “A Performance Comparison
of Open-Source Stream Processing Platforms,” in: Proceedings of the 2016 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6.

Luzuriaga, J. E., Perez, M., Boronat, P., Cano, J. C., Calafate, C., & Manzoni, P. (2015),
“A comparative evaluation of AMQP and MQTT protocols over unstable and mobile
networks,” Proceedings of the 12th Annual IEEE Consumer Communications and
Networking Conference (CCNC 2015), 931–936.

http://www.libelium.com/development/plug-sense/documentation/waspmote-plug-sense-sensors-guide/
http://www.libelium.com/development/plug-sense/documentation/waspmote-plug-sense-sensors-guide/
http://www.libelium.com/products/waspmote/
http://www.libelium.com/products/waspmote/
https://locationtech.github.io/jts/jts-features.html
https://locationtech.github.io/jts/jts-features.html

248 BIBLIOGRAPHY

Maheshwari, P. & Pang, M. (2005), “Benchmarking message-oriented middleware:
TIB/RV versus SonicMQ,” Concurrency Computation Practice and Experience, 17,
1507–1526.

Manley, J. H. (1974), “Embedded computers: software cost considerations,” in:
Proceedings of the National Computer Conference 1974, pp. 343—-347.

Mapbox (2018), “Geobuf,” available at https://github.com/mapbox/geobuf (Ac-
cessed: 2018-11-20).

Maréchaux, J.-L. (2006), “Combining Service-Oriented Architecture and Event-Driven
Architecture using an Enterprise Service Bus,” IBM Developer Works, 1269—-1275.

Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A., &
Yaqoob, I. (2017), “Big IoT Data Analytics: Architecture, Opportunities, and Open
Research Challenges,” IEEE Access, 5, 5247–5261.

Marz, N. & Warren, J. (2015), Big Data: Principles and Best Practices of Scalable
Realtime Data Systems, Greenwich, USA: Manning Publications Co.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., & Oltramari, A. (2003), “WonderWeb
Deliveralbe D18 - Ontology Library,” Laboratory for Applied Ontology, ISTC-CNR,
Trento, Italy.

Matheus, R., Janssen, M., & Maheshwari, D. (2018), “Data science empowering the
public: Data-driven dashboards for transparent and accountable decision-making
in smart cities,” Government Information Quarterly, 1–9.

Mattern, F. & Flörkemeier, C. (2010), “Vom Internet der Computer zum Internet der
Dinge,” Informatik-Spektrum, 33, 107–121.

Mattheis, S., Khaled Al-Zahid, K., Engelmann, B., Hildisch, A., Holder, S., Lazarevych,
O., Mohr, D., Sedlmeier, F., & Zinck, R. (2014), “Putting the car on the map: A
scalable map matching system for the Open Source Community,” Lecture Notes
in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI),
P-232, 2109–2119.

Mayer, S. & Guinard, D. (2011), “An Extensible Discovery Service for Smart Things,”
in: Proceedings of the 2nd International Workshop on Web of Things (WoT’11), pp.
1–6.

McClure, J. & Dobs, J. (2015), “XenQTT,” available at https://github.com/
TwoGuysFromKabul/xenqtt (Accessed: 2019-05-15).

McCullough, A., Barr, S., & James, P. (2011), “A Typology of Real-Time Parallel
Geoprocessing for the Sensor Web Era,” in: Foerster, T., Broering, A., Baranski,
B., Pross, B., Stasch, C., Everding, T., & Maes, S. (eds.): Proceedings of the

https://github.com/mapbox/geobuf
https://github.com/TwoGuysFromKabul/xenqtt
https://github.com/TwoGuysFromKabul/xenqtt

BIBLIOGRAPHY 249

Workshop on Integrating Sensor Web and Web-based Geoprocessing at AGILE
2011 conference, pp. 1–5.

Medina, C. A., Perez, M. R., & Trujillo, L. C. (2017), “IoT Paradigm into the Smart
City Vision: A Survey,” in: Proceedings of the 2017 IEEE International Conference
on Internet of Things (iThings), IEEE Green Computing and Communications
(GreenCom), IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pp. 695–704.

Menke, K., Pirelli, L., Smith, R., & van Hoesen, J. (2015), Mastering QGIS, Birming-
ham: Packt Publishing Ltd.

Michelson, B. M. (2006), “Event-Driven Architecture Overview: Event-Driven SOA Is
Just Part of the EDA Story,” Patricia Seybold Group and Elemental Links Inc.

Morales, J. & Garcia, M. (2015), “GeoSmart Cities: Event-driven geoprocessing as
enabler of smart cities,” in: Processing of the 2015 IEEE First International Smart
Cities Conference (ISC2), pp. 1–6.

Mourelatos, A. P. D. (1978), “Events, processes, and states,” Linguistics and Philoso-
phy, 2, 415–434.

Müller, M. & Pross, B. (2018), “OGC WPS 2.0.2 Interface Standard: Corrigendum 2,”
OGC® Implementation Standard, 14-065r2.

Naghavi, M. (2012), “Cloud Computing as an Innovation in GIS & SDI: Methodologies,
Services, Issues and Deployment Techniques,” Journal of Geographic Information
System, 4, 597–607.

Naik, N. (2017), “Choice of Effective Messaging Protocols for IoT Systems: MQTT,
CoAP, AMQP and HTTP,” in: Proceedings of the 2017 IEEE International Sympo-
sium on Systems Engineering (ISSE 2017), pp. 1–7.

Nastase, L. (2017), “Security in the Internet of Things: A Survey on Application
Layer Protocols,” in: Proceedings of the 21st International Conference on Control
Systems and Computer (CSCS 2017), pp. 659–666.

Nittel, S. (2009), “A Survey of Geosensor Networks: Advances in Dynamic Environ-
mental Monitoring,” Sensors, 9, 5664–5678.

Nittel, S. (2015), “Real-time Sensor Data Streams,” SIGSPATIAL Special, 7, 22–28.

Nittel, S., Stefanidis, A., Cruz, I., Egenhofer, M., Goldin, D., Howard, A., Labrinidis, A.,
Madden, S., Voisard, A., & Worboys, M. (2004), “Report from the First Workshop
on Geo Sensor Networks,” ACM SIGMOD Record, 33, 141–144.

O’Hara, J. (2007), “Toward a commodity enterprise middleware,” ACM Queue, 5,
48–55.

250 BIBLIOGRAPHY

Oki, B. M., Pfluegl, M., Siegel, A., & Skeen, D. (1993), “The Information Bus - An
Architecture for Extensible Distributed Systems,” in: Proceedings of the 14th ACM
symposium on Operating systems principles (SOSP’93), pp. 58–68.

O’Leary, N. & Piper, A. (2019), “MQTT,” available at http://mqtt.org/ (Accessed:
2019-05-15).

Olsson, J. (2014), “6LoWPAN demystified,” Texas Instruments Inc, Dallas.

Oracle (2018), “SDO-GEOM Package (Geometry),” Oracle Spatial Developer’s Guide.

O’Sullivan, D. & Igoe, T. (2004), Physical Computing: Sensing and Controlling the
Physical World with Computers, Boston: Thomson Course Technology.

Overmars, M. H. & van Leeuwen, J. (1981), “Maintenance of Configurations in the
Plane,” Journal of Computer and System Sciences, 23, 166–204.

Özgövde, A. & Grüninger, M. (2010), “Foundational Process Relations in Bio-
Ontologies,” in: Proceedings of the 6th International Conference on Formal Ontol-
ogy in Information Systems (FOIS 2010), pp. 243–256.

Özsoyoglu, G. & Snodgrass, R. T. (1995), “Temporal and Real-Time Databases: A
Survey,” IEEE Transactions on Knowledge and Data Engineering, 7, 513–532.

Pakkala, D. & Latvakoski, J. (2007), “Distributed Service Platform for Adaptive Mobile
Services,” International Journal of Pervasive Computing and Communications, 2,
135–148.

Palattella, M. R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., & Ladid, L.
(2016), “Internet of Things in the 5G Era: Enablers, Architecture, and Business
Models,” IEEE Journal on Selected Areas in Communications, 34, 510–527.

Peuquet, D. & Qian, L. (1996), “An Integrated Datatbase Design for Temporal GIS,”
in: Proceedings of the 7th International Symposium on Spatial Data Handling, pp.
21–31.

Peuquet, D. J. (1994), “It’s about Time: A Conceptual Framework for the Represen-
tation of Temporal Dynamics in Geographic Information Systems.” Annals of the
Association of American Geographers, 84, 441–461.

Peuquet, D. J. (1999), “Time in GIS and geographical databases,” in: Longley, P.,
Goodchild, M., Maguire, D., & Rhind, D. (eds.): Geographical Information Systems:
Principles and Technical Issues, New York: John Wiley & Sons, vol. 1, 2nd ed., pp.
91–103.

Peuquet, D. J. (2005), “Theme section on advances in spatio-temporal analysis and
representation,” ISPRS Journal of Photogrammetry and Remote Sensing, 60, 1–2.

http://mqtt.org/

BIBLIOGRAPHY 251

Peuquet, D. J. & Duan, N. (1995), “An event-based spatiotemporal data model
(ESTDM) for temporal analysis of geographical data,” International Journal of
Geographical Information Systems, 9, 7–24.

Polous, K. (2016), “Event Cartography: A New Perspective in Mapping,” Ph.d. thesis,
Technische Universität München.

Poorazizi, M. E. & Hunter, A. (2015), “Evaluation of Web Processing Service Frame-
works,” OSGeo Journal, 14, 1–24.

Portele, C. (2007), “OpenGIS® Geography Markup Language (GML) Encoding
Standard - Version 3.2.1,” OpenGIS® Standard, OGC 07-036.

PostGIS Development Group (2018), “PostGIS EWKB, EWKT and
Canonical Forms,” available at http://postgis.net/docs/manual-2.5/
using{_}postgis{_}dbmanagement.html{#}EWKB{_}EWKT (Accessed: 2019-05-
15).

Przybylla, M. & Romeike, R. (2014), “Physical Computing in Computer Science
Education,” in: Proceedings of the 9th Workshop in Primary and Secondary
Computing Education (WiPSCE’14), pp. 136–137.

Pustejovsky, J. (1991), “The syntax of event structure,” Cognition, 41, 47–81.

PyWPS Development Team (2009), “Python Web Processing Service (PyWPS),
Software, Version 4.0.0,” available at http://pywps.org (Accessed: 2019-05-15).

QGIS Project (2018), “PyQGIS developer cookbook, Release 2.18,” QGIS Project.

Ray, P. P. (2018), “A survey on Internet of Things architectures,” Journal of King Saud
University - Computer and Information Sciences, 30, 291–319.

Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Cla, S. (2016), “Middleware for
Internet of Things: A Survey,” IEEE Internet of Things Journal, 3, 70–95.

Resch, B., Blaschke, T., & Mittlboeck, M. (2010), “Live Geography : Interoperable
Geo-Sensor Webs Facilitating the Vision of Digital Earth,” International Journal On
Advances in Networks and Services, 3, 323–332.

Resnick, P. (2001), “Internet Message Format,” Network Working Group Standards
Track, RFC 2822.

Ribeiro, A., Vieira, J., Sousa, V., & Cardoso, A. (2015), “Demonstration of GIS
web-based platform for experimentation supported by geosensors in a WSN,” in:
Proceedings of the 3rd Experiment International Conference (exp.at 2015), pp.
137–138.

http://postgis.net/docs/manual-2.5/using{_}postgis{_}dbmanagement.html{#}EWKB{_}EWKT
http://postgis.net/docs/manual-2.5/using{_}postgis{_}dbmanagement.html{#}EWKB{_}EWKT
http://pywps.org

252 BIBLIOGRAPHY

Rieke, M., Bigagli, L., Herle, S., Jirka, S., Kotsev, A., Liebig, T., Malewski, C., Paschke,
T., & Stasch, C. (2018), “Geospatial IoT—The Need for Event-Driven Architectures
in Contemporary Spatial Data Infrastructures,” ISPRS International Journal of
Geo-Information, 7, 1–29.

Rios, L. G. & Diguez, J. A. I. (2014), “Big Data Infrastructure for analyzing data
generated by Wireless Sensor Networks,” in: Proceedings of the 2014 IEEE
International Congress on Big Data, pp. 816–823.

Sachs, K., Kounev, S., Appel, S., & Buchmann, A. (2009), “Benchmarking of Message-
Oriented Middleware,” in: Proceedings of the Third ACM International Conference
on Distributed Event-Based Systems, pp. 1–2.

Saint-Andre, P. (2004), “Extensible Messaging and Presence Protocol (XMPP): Core,”
Network Working Group Standards Track, RFC 3920.

Saint-Andre, P. (2011), “Extensible Messaging and Presence Protocol (XMPP): Core,”
IETF Standards Track, RFC 6120.

Saint-Andre, P. (2018), “XEP-0045: Multi-User Chat,” XEP Standards Track, XEP-
0045.

Saint-Andre, P. & Cridland, D. (2016), “XEP-0001: XMPP Extension Protocols,” XEP
Standards Track, XEP-0001.

Saint-Andre, P., Smith, K., & Tronçon, R. (2009), XMPP: The Definitive Guide Building
Real-Time Applications with Jabber Technologies, Sebastopol: O’Reilly Media Inc.

Santos, P., Rodrigues, J., Cruz, S., Lourenco, T., D’Orey, P., Luis, Y., Rocha, C.,
Sousa, S., Crisóstomo, S., Queirós, C., Sargento, S., Aguiar, A., & Barros, J.
(2018), “PortoLivingLab: An IoT-based Sensing Platform for Smart Cities,” IEEE
Internet of Things Journal, 5, 523–532.

Sauter, M. (2015), Grundkurs Mobile Kommunikationssysteme, Wiesbaden: Springer
Vieweg, 6th ed.

Schaeffer, B., Baranski, B., Foerster, T., & Brauner, J. (2012), “A Service-Oriented
Framework for Real-Time and Distributed Geoprocessing,” in: Bocher, E. & Neteler,
M. (eds.): Geospatial Free and Open Source Software in the 21st Century. Pro-
ceedings of the first Open Source Geospatial Research Symposium (OGRS 2009),
Berlin, Heidelberg: Springer, pp. 3–20.

Schulte, R. & Natis, Y. (2003), “Event-Driven Architecture Complements SOA,” Deci-
sion Framework, DF-20-1154, 1–7.

Schut, P. (2007), “OpenGIS Web Processing Service - Version 1.0.0,” OGC® Stan-
dard, 05-007r7.

BIBLIOGRAPHY 253

Seeger, H. (1999), “Spatial referencing and coordinate systems,” in: Longley, P.,
Goodchild, M., Maguire, D., & Rhind, D. (eds.): Geographical Information Systems:
Principles and Technical Issues, New York: John Wiley & Sons, 2nd ed., pp.
427–436.

Selva, A. (2018), “Moquette,” https://github.com/andsel/moquetteavailable at https:
//github.com/andsel/moquette (Accessed: 2019-02-08).

Semtech Corporation (2013), “SX1272/3/6/7/8 LoRa Modem,” Designer’s Guide,
AN1200.13, 1–9.

Serbanati, A., Medaglia, C. M., & Ceipidor, U. B. (2011), “Building blocks of the
internet of things: State of the art and beyond,” in: Turcu, C. (ed.): Deploying RFID
- Challenges, Solutions, and Open Issues, IntechOpen, pp. 351–366.

Shekhar, S., Jiang, Z., Ali, R. Y., Eftelioglu, E., Tang, X., Gunturi, V. M. V., & Zhou,
X. (2015), “Spatiotemporal Data Mining: A Computational Perspective,” ISPRS
International Journal of Geo-Information, 4, 2306–2338.

Shelby, Z., Hartke, K., & Bormann, C. (2014), “The Constrained Application Protocol
(CoAP),” IETF Standards Track, RFC 7252.

Shi, D., Xu, H., Su, R., & You, Z. (2010), “A GEO-related IOT Applications Platform
Based On Google Map,” in: Proceedings of the 7th IEEE International Conference
on E-Business Engineering, IEEE, pp. 380–384.

Shukla, A. & Simmhan, Y. (2017), “Benchmarking Distributed Stream Processing
Platforms for IoT Applications,” in: Nambiar, R. & Poess, M. (eds.): Performance
Evaluation and Benchmarking. Traditional - Big Data - Internet of Things. Revised
Selected Papers of the 8th TPC Technology Conference (TPCTC 2016), Cham:
Springer International Publishing, pp. 90–106.

Simonis, I. (2006), “OGC® Sensor Alert Service Candidate Implementation Specifi-
cation,” OpenGIS® Best Practices, 06-028r3.

Simonis, I. (2008), “OGC® Sensor Web Enablement Architecture,” OGC® Best
Practice, 06-021r4.

Simonis, I. & Echterhoff, J. (2006), “Draft OpenGIS® Web Notification Service Imple-
mentation Specification - Version 0.0.9,” OpenGIS® Best Practices Paper, OGC
06-095.

Simonis, I. & Echterhoff, J. (2011), “OGC® Sensor Planning Service Implementation
Standard - Version 2.0,” OpenGIS® Implementation Standard, OGC 09-000.

https://github.com/andsel/moquette
https://github.com/andsel/moquette

254 BIBLIOGRAPHY

Smith, B., Almeida, M., Bona, J., Brochhausen, M., Ceusters, W., Courtot, M., Dipert,
R., Goldfain, A., Grenon, P., Hastings, J., Hogan, W., Jacuzzo, L., Johansson,
I., Mungall, C., Natale, D., Neuhaus, F., Overton, J., Petosa, A., Rovetto, R.,
Ruttenberg, A., Ressler, M., Rudniki, R., & Schulz, S. (2015), “Basic Formal
Ontology 2.0 - Specification and User’s Guide,” .

Sowa, J. F. (2000), Knowledge Representation: Logical, Philosophical, and Compu-
tational Foundations, Pacific Grove: Brooks Cole Publishing Co.

Stanford-Clark & Truong, H. L. (2013), “MQTT For Sensor Networks (MQTT-SN)
Protocol Specification - Version 1.2,” IBM Corporation.

Stonebraker, M., Çetintemel, U., & Zdonik, S. (2005), “The 8 Requirements of Real-
Time Stream Processing,” ACM SIGMOD Record, 34, 42–47.

Strobl, C. (2008), “Dimensionally Extended Nine Intersection Model (DE-9IM),” in:
Shekhar, S. & Xiong, H. (eds.): Encyclopedia of GIS, Boston: Springer, pp. 240–
245.

Tan, Y., Vuran, M. C., & Goddard, S. (2009), “Spatio-Temporal Event Model for Cyber-
Physical Systems,” in: Proceedings of the 29th IEEE International Conference on
Distributed Computing Systems Workshops, pp. 44–50.

Tanenbaum, A. S. & Wetherall, D. J. (2013), Computer Networks, London: Pearson
Education, 5th ed.

Teklemariam, G. K. (2018), “CoAP-Based Enablers for Designing Efficient and Reli-
able Distributed IoT Applications,” Doctoral thesis, Ghent University.

Terhorst, A., Moodley, D., Simonis, I., Frost, P., McFerren, G., Roos, S., & van den
Bergh, F. (2008), “Using the Sensor Web to Detect and Monitor the Spread of
Vegetation Fires in Southern Africa,” in: Nittel, S., Labrinidis, A., & Stefanidis, A.
(eds.): GeoSensor Networks. Revised Selected and Invited Papers of the Second
International Conference, (GSN 2006), Berlin, Heidelberg: Springer, pp. 239–251.

Terracotta Inc. (2019a), “Cron Trigger Tutorial,” available at http://www.
quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.
html (Accessed: 2019-02-07).

Terracotta Inc. (2019b), “Quartz Job Schedular,” available at http://www.
quartz-scheduler.org/ (Accessed: 2019-02-08).

Thakur, G. S., Bhaduri, B. L., Piburn, J. O., Sims, K. M., Stewart, R. N., & Urban,
M. L. (2015), “PlanetSense: A Real-time Streaming and Spatio-temporal Analyt-
ics Platform for Gathering Geo-spatial Intelligence from Open Source Data,” in:
Proceedings of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems (SIGSPATIAL’15), pp. 1–4.

http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html
http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html
http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/

BIBLIOGRAPHY 255

Theorin, A., Bengtsson, K., Provost, J., Lieder, M., Johnsson, C., Lundholm, T.,
& Lennartson, B. (2017), “An Event-Driven Manufacturing Information System
Architecture for Industry 4.0,” International Journal of Production Research, 55,
1297–1311.

Tönjes, R., Ali, M., Bargnahi, P., Ganea, S., Ganz, F., Haushwirth, F., Kjaergaard, B.,
Kümper, D., Mileo, A., Nechifor, S., Sheth, A., & Tsiatsis, V. (2014), “Real-Time IoT
Stream Processing and Large-scale Data Analytics for Smart City Applications,”
in: Proceedings of the European Conference on Networks and Communications
2014, pp. 1–5.

Traversat, B., Abdelaziz, M., Doolin, D., Duigou, M., Hugly, J., & Pouyoul, E. (2003),
“Project JXTA-C: Enabling a Web of Things,” in: Proceedings of the 36th Annual
Hawaii International Conference on System Sciences., p. 282.

Trieloff, C., Hara, J. O., Atwell, M., & Contributers (2008), AMQP - Advanced Message
Queuing Protocol - Protocol Specification.

van Bentem, A. (2018), “Best practices when sending GPS loca-
tion data,” available at https://www.thethingsnetwork.org/forum/t/
best-practices-when-sending-gps-location-data/1242 (Accessed: 2019-
02-15).

van der Zee, E. & Scholten, H. (2013), “Application of geographical concepts and
spatial technology to the Internet of Things. The role of location in real-time smart
environments.” FEWEB Research Memorandum, 2013-33.

van der Zee, E. & Scholten, H. (2014), “Spatial Dimensions of Big Data: Application
of Geographical Concepts and Spatial Technology to the Internet of Things,” in:
Bessis, N. & Dobre, C. (eds.): Big Data and Internet of Things: A Roadmap for
Smart Environments, Cham: Springer International Publishing, pp. 137–168.

Venkateswara Rao, K., Govardhan, A., & Chalapati Rao, K. (2012), “Spatiotemporal
Data Mining: Issues, Tasks And Applications,” International Journal of Computer
Science & Engineering Survey (IJCSES), 3, 39–52.

Vilain, M. B. (1982), “A System for Reasoning about Time,” Proceedings of Second
National Conference on Artificial Intelligence (AAAI-82), 197–201.

Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C. J., & Buytaert, W. (2015), “Web
technologies for environmental Big Data,” Environmental Modelling & Software, 63,
185–198.

Vretanos, P. (2014), “OGC Filter Encoding 2.0 Encoding Standard – With Corrigen-
dum - Version 2.0.3,” OGC® Implementation Standard, 09-026r2.

https://www.thethingsnetwork.org/forum/t/best-practices-when-sending-gps-location-data/1242
https://www.thethingsnetwork.org/forum/t/best-practices-when-sending-gps-location-data/1242

256 BIBLIOGRAPHY

Waher, P. (2017), “XEP-0323: Internet of Things - Sensor Data,” XEP Standards
Track, XEP-0323.

Walter, K. & Nash, E. (2009), “Coupling Wireless Sensor Networks and the Sensor
Observation Service – Bridging the Interoperability Gap,” in: Proceedings of the
12th AGILE International Conference on Geographic Information Science, pp. 1–9.

Wan, J., Li, D., Zou, C., & Zhou, K. (2012), “M2M Communications for Smart City:
An Event-Based Architecture,” in: Proceedings of the IEEE 12th International
Conference on Computer and Information Technology (CIT’12), pp. 895–900.

Wang, F., Hu, L., Zhou, J., & Zhao, K. (2015), “A Survey from the Perspective of
Evolutionary Process in the Internet of Things,” International Journal of Distributed
Sensor Networks, 11, 1–9.

Wang, H., Xiong, D., Wang, P., & Liu, Y. (2017), “A Lightweight XMPP Publish/Sub-
scribe Scheme for Resource-Constrained IoT Devices,” IEEE Access, 5, 16393–
16405.

Wang, S. (2010), “A CyberGIS Framework for the Synthesis of Cyberinfrastructure,
GIS, and Spatial Analysis,” Annals of the Association of American Geographers,
100, 535–557.

Wang, S., Wan, J., Li, D., & Zhang, C. (2016), “Implementing Smart Factory of
Industrie 4.0: An Outlook,” International Journal of Distributed Sensor Networks,
12, 1–10.

Weiser, M. (1991), “The Computer for the 21st Century,” Scientific American, 265,
94–104.

Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., & Lees,
J. (2006), “Deploying a Wireless Sensor Network on an Active Volcano,” IEEE
Internet Computing, 10, 18–25.

Westerholt, R. & Resch, B. (2015), “Asynchronous Geospatial Processing: An
Event-Driven Push-Based Architecture for the OGC Web Processing Service,”
Transactions in GIS, 19, 455–479.

Westfall, J. (2010), “Common Alerting Protocol Version 1.2,” OASIS Standard.

Wiener, P., Stein, M., Seebacher, D., Bruns, J., Frank, M., Simko, V., Zander, S., &
Nimis, J. (2016), “BigGIS: A Continuous Refinement Approach to Master Hetero-
geneity and Uncertainty in Spatio-Temporal Big Data,” in: Proceedings of the 24th
International Conference on Advances in Geographic Information Systems (ACM
SIGSPATIAL’16), pp. 1–4.

BIBLIOGRAPHY 257

Winters, R. M., Tsuchiya, T., Lerner, L. W., & Freeman, J. (2016), “Multi-Modal
Web-Based Dashboards for Geo-Located Real-Time Monitoring,” in: Proceedings
of the 2nd Web Audio Conference (WAC-2016), pp. 1–6.

Worboys, M. (2005), “Event-oriented approaches to geographic phenomena,” Inter-
national Journal of Geographical Information Science, 19, 1–28.

Worboys, M. & Hornsy, K. (2004), “From Objects to Events: GEM, the Geospatial
Event Model,” in: Egenhofer, M. J., Freska, C., & Miller, H. (eds.): Geographic
Information Science. Proceedings of the 3rd International Conference GIScience
2004, Berlin, Heidelberg: Springer, pp. 327–343.

XMPP Software Foundation (2018), “XMPP Extension Protocols,” available at https:
//xmpp.org/extensions/ (Accessed: 2018-12-10).

Yamaguchi, T. (2017), “MQTT-SN over UDP and XBee,” available at https://github.
com/ty4tw/MQTT-SN (Accessed: 2019-02-15).

Yavari, A., Jayaraman, P. P., & Georgakopoulos, D. (2016), “Contextualised Service
Delivery in the Internet of Things,” in: Proceedings of the IEEE 3rd World Forum
on Internet of Things (WF-IoT), pp. 454–459.

Yick, J., Mukherjee, B., & Ghosal, D. (2008), “Wireless sensor network survey,”
Computer Networks, 52, 2292–2330.

Yokotani, T. & Sasaki, Y. (2017), “Comparison with HTTP and MQTT on required
network resources for IoT,” in: Proceedings of the International Conference on
Control, Electronics, Renewable Energy, and Communications (ICCEREC 2016),
pp. 1–6.

Yue, P. & Jiang, L. (2014), “BigGIS: How Big Data Can Shape Next-Generation GIS,”
in: Proceedings of the 3rd International Conference on Agro-Geoinformatics, pp.
1–6.

Yue, P., Zhang, C., Zhang, M., & Jiang, L. (2014), “Sensor Web Event Detection and
Geoprocessing over Big Data,” in: Proceedings of the 2014 IEEE Geoscience and
Remote Sensing Symposium, pp. 1401–1404.

Zaborovsky, V., Lukashin, A., & Muliukha, V. (2016), “Robotic Operations Network:
Cyber-Physics Framework and Cloud Centric Software Architecture,” in: Rawat, D.,
Rodrigues, J., & Stojmenovic, I. (eds.): Cyber-Physical Systems: From Theory to
Practice, Boca Raton: CRC Press, pp. 259–282.

Zafari, F., Gkelias, A., & Leung, K. (2017), “A Survey of Indoor Localization Systems
and Technologies,” IEEE Communications Surveys & Tutorials, 1–32.

https://xmpp.org/extensions/
https://xmpp.org/extensions/
https://github.com/ty4tw/MQTT-SN
https://github.com/ty4tw/MQTT-SN

258 BIBLIOGRAPHY

Zakaria, S., Rey, G., Mohamed, E., Lavirotte, S., Fazziki Abdelaziz, E., & Tigli, J.-Y.
(2015), “Smart Geographic object: Toward a new understanding of GIS Technology
in Ubiquitous Computing,” IJCSI International Journal of Computer Science Issues,
12, 52–61.

Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014), “Internet of
Things for Smart Cities,” IEEE Internet of Things Journal, 1, 22–32.

Zdraveski, V., Mishev, K., Trajanov, D., & Kocarev, L. (2017), “ISO-Standardized
Smart City Platform Architecture and Dashboard,” IEEE Pervasive Computing, 16,
35–43.

Zhang, Y., Duan, L., & Chen, J.-L. (2014), “Event-driven SOA for IoT services,” in:
Proceedings of the 2014 IEEE International Conference on Services Computing
(SCC 2014), pp. 629–636.

Zheng, Y. U. (2015), “Trajectory Data Mining : An Overview,” ACM Transaction on
Intelligent Systems and Technology, 6, 29.

LIST OF ABBREVIATIONS

4IM Four-Intersection Model

9IM Nine-Intersection Model

6LoWPAN IPv6 over Low-power WPAN

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

BLE Bluetooth Low Energy

CAP Common Alerting Protocol

CEP Complex Event Processing

CoAP Constrained Application Protocol

CPS Cyber-Physical System

CRS Coordinate Reference System

CSP Complex Stream Processing

DE-9IM Dimensionally Extended Nine-Intersection Model

DSP Distributed Stream Processing

DTLS Datagram Transport Layer Security

EDA Event-driven Architecture

EML Event Pattern Markup Language

EPSG European Petroleum Survey Group Geodesy

ESP Event Stream Processing

ETRS89 European Terrestrial Reference System 1989

EWKT Extended Well-Known Text

EXI Efficient XML Interchange

260 LIST OF ABBREVIATIONS

FES OGC Filter Encoding Standard

FTP File Transfer Protocol

GeoMQTT Geospatial MQTT

GeoMQTT-SN GeoMQTT for Sensor Networks

GIS Geographic Information System

GIScience Geographic Information Science

GML Geography Markup Language

GNSS Global Navigation Satellite System

GPS Global Positioning System

GSN Geo Sensor Network

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

I/O Input/Output

IM Instant Messaging

INSPIRE Infrastructure for Spatial Information in Europe

IIoT Industrial IoT

IoT Internet-of-Things

IP Internet Protocol

IPv6 Internet Protocol Version 6

IPC Interprocess Communication

IRC Internet Relay Chat

ISM Industrial, Scientific and Medical Band

ISO International Organization for Standardization

JMS Java Message Service

JSON JavaScript Object Notation

LIST OF ABBREVIATIONS 261

KVP Key-Value Pair

LBS Location-Based Service

LoRa Long Range

LoRaWAN Long Range Wide Area Network

LPWAN Low Power Wide Area Network

M2M Machine-to-Machine

MEP Message Exchange Pattern

MF Moving Feature Access

MIME Multipurpose Internet Mail Extensions

MOM Message-Oriented Middleware

MQTT Message Queuing Telemetry Transport

MQTT-SN MQTT for Sensor Networks

NFC Near Field Communication

O&M Observations and Measurements

OGC Open Geospatial Consortium

OODA Observe-Orient-Decide-Act

OS Operating System

OWS OGC Web Service

QoS Quality of Service

REST Representational State Transfer

RFID Radio-Frequency Identification

ROA Resource-oriented Architecture

RPC Remote Procedure Call

SAS Sensor Alert Service

SASL Simple Authentication and Security Layer

SDI Spatial Data Infrastructure

262 LIST OF ABBREVIATIONS

SensorML Sensor Model Language

SES Sensor Event Service

SMTP Simple Mail Transfer Protocol

SN Sensor Network

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SOS Sensor Observation Service

SPS Sensor Planning Service

SRID Spatial Reference System Identifier

SSDI Sensor and Spatial Data Infrastructure

SWE Sensor Web Enablement

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UOM Unit of Measurement

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

UWB Ultra Wide Band

WFS Web Feature Service

WGS84 World Geodetic System 1984

WGSN Wireless Geo Sensor Network

WKB Well-Known Binary

WKT Well-Known Text

WLAN Wireless Local Area Network

WMAN Wireless Metropolitan Area Network

LIST OF ABBREVIATIONS 263

WMS Web Map Service

WNAN Wireless Neighborhood Area Network

WNS Web Notification Service

WoT Web of Things

WPAN Wireless Personal Area Network

WPS Web Processing Service

WS-N OASIS Web Services Notification

WSN Wireless Sensor Network

WWAN Wireless Wide Area Network

WWW World Wide Web

XEP XMPP Extension Protocol

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

264 LIST OF ABBREVIATIONS

LIST OF FIGURES

1.1 Evolution of Geoinformation-Technology 2
1.2 Thesis outline and interrelationships between chapters 9

2.1 IoT reference model . 17
2.2 Generic IoT Architecture . 22
2.3 Industrial and Consumer IoT . 23
2.4 Single-board computer as a sensor node 24
2.5 Sensor nodes in a Wireless Sensor Network (WSN) 28
2.6 Request/Response mechanisms . 31
2.7 Message Queuing . 32
2.8 Publish/Subscribe interaction scheme 33
2.9 Notification scheme . 35
2.10 Layers of OSI reference model, TCP/IP model and protocol examples 36
2.11 M2M protocol stack in IoT . 38
2.12 Key wireless M2M technologies for the IoT 39
2.13 IEEE 802 standards in the ISO/OSI model for WPAN and WLAN . . . 42
2.14 ZigBee stack . 43
2.15 6LoWPAN stack example . 44
2.16 LoRa & LoRaWAN layer stack . 45
2.17 HTTP protocol stack . 47
2.18 HTTP request/response interaction scheme 48
2.19 Abstract protocol stack of CoAP . 50
2.20 CoAP message format . 51
2.21 CoAP GET request with piggybacked response 52
2.22 CoAP GET request with separate response 53
2.23 Observing a resource in CoAP . 54
2.24 Layering of MQTT and MQTT-SN . 55
2.25 Layering of XMPP . 56
2.26 Architecture of AMQP . 61
2.27 Layer stack of AMQP . 62
2.28 SWE interface model . 67
2.29 SWE interface model . 68
2.30 Sensing entities in the SensorThings API 70
2.31 Seminal OGC work on eventing-related specifications 73

3.1 Positioning technologies: accuracy and operation scales 81

266 LIST OF FIGURES

3.2 Continuous loop of sensing, analyzing, predicting, and act(uat)ing in a
smart city . 82

3.3 History of the Soers area in Aachen. 87
3.4 Object-change history . 88
3.5 Process as patterns of activity . 93
3.6 Geographic coordinates . 107
3.7 Different type of features in the Euclidean plane 110
3.8 touches-relation and its representation in 4IM and 9IM 116
3.9 Line crosses polygon relation in the DE-9IM 117
3.10 An EDA pattern for the Geospatial IoT 120
3.11 GeoEvent (GeoStream) processing . 127

4.1 MQTT Broker . 133
4.2 Different QoS levels and message exchange from publisher to broker 137
4.3 MQTT-SN architecture . 142
4.4 GeoMQTT Broker . 144
4.5 GeoMQTT Java Client - GUI . 156
4.6 GeoMQTT for Sensor Networks (GeoMQTT-SN) 156

5.1 Geospatial IoT scenarios . 165
5.2 Encoding sizes of a GeoEvent in the EarlyDike scenario 173
5.3 Encoding sizes of a GeoEvent in the URBMOBI scenario 174
5.4 GeoMQTT-SN encoding sizes of a GeoEvent in the EarlyDike & URB-

MOBI scenarios . 175
5.5 Encoding sizes of a GeoSubscription in the EarlyDike scenario 176
5.6 Encoding sizes of a GeoSubscription in the URBMOBI scenario 177
5.7 Geospatial IoT scenarios . 179
5.8 Latency of (GEO)PUBLISH message with QoS 1 185
5.9 Round-trip latency using one subscriber in MQTT 186
5.10 Round-trip latencies using one subscriber in GeoMQTT 187
5.11 CPU usage of the broker at different throughput levels during the

GeoPubGeoSub test plan . 188
5.12 Round-trip latencies for multiple subscribers and throughputs 189
5.13 Round-trip latency using one subscriber at different throughput levels

with coordinate transformation . 190
5.14 CPU usage of the broker at different throughput levels with single

subscriber and coordinate transformation 190
5.15 Round-trip latencies for multiple subscribers and coordinate transfor-

mation . 191
5.16 Round-trip latencies for multiple subscribers and coordinate transfor-

mation in testbed 2 . 192

6.1 QGIS Desktop Version 2.18.x LTR (Las Palmas) 197

LIST OF FIGURES 267

6.2 GeoMQTT plug-in attached to the QGIS Desktop window 198
6.3 REST-GeoMQTT Bridge . 201
6.4 Web map application to request GeoMQTT events using the REST

bridge . 203
6.5 Closing the interoperability gap with a Sensor Bus 205
6.6 GeoEvent Bus with different producers and consumers of GeoEvents 208
6.7 Proposed architecture for connecting the WPS interface with GeoPipes213
6.8 GeoPipes and named wildcards example 215
6.9 GeoPipes integration in WPS - sequence of messages 217
6.10 Web application for the online map matching WPS process 220

268 LIST OF FIGURES

LIST OF TABLES

2.1 Physical-Computing Platforms . 25

3.1 Interval definition in IS0 8601 . 99
3.2 Point-Point-Relations . 100
3.3 Interval-Interval-Relations according to Allen’s interval algebra 101
3.4 Derived Interval-Interval-Relation . 102
3.5 Interval-Point-Relation . 103
3.6 Derived Interval-Point-Relation . 104
3.7 Topological predicates derived from the DE-9IM 118
3.8 Topological predicates derived from the DE-9IM 118

4.1 Compilation of IoT application protocols 130
4.2 Evaluation of Requirements Analysis 131
4.3 Control Packet types in MQTT . 135
4.4 Added Control Packet type in GeoMQTT 145
4.5 GEOPUBLISH fixed header . 146
4.6 GEOPUBLISH variable header . 147
4.7 GEOSUBSCRIBE fixed header . 148
4.8 GeoSubscription/QoS pair in GEOSUBSCRIBE payload 149
4.9 Coding of the temporal relation . 150
4.10 Formats of timestamps and time intervals in GeoMQTT 151
4.11 Coding of the spatial relation . 152
4.12 Conflict handling strategies between MQTT and GeoMQTT 154
4.13 Added Control Packet types in GeoMQTT-SN 157
4.14 GEOPUBLISH packet in GeoMQTT-SN 158
4.15 GEOSUBSCRIBE packet in GeoMQTT-SN 160
4.16 GEOMREGISTER packet in GeoMQTT-SN 161

5.1 Hardware specifications in testbeds 180

6.1 Mapping of the topic "SOS/insertObservation/labdike/geotextile/1/voltage/V"
to mandatory O&M attributes . 207

6.2 URI syntax for different types of pipes 214
6.3 MIME types for different types of pipes 214
6.4 Inputs and Outputs for dynamic convex hull service 218
6.5 Inputs and Outputs for map matching service 219

Veröffentlichungen des Geodätischen Instituts der Rheinisch-Westfälischen
Technischen Hochschule Aachen

Die 'Veröffentlichungen des Geodätischen Instituts ... ' wurden bis 2009 im Rah-
men des wissenschaftlichen Schriftenaustausches verteilt und nicht über den Buch-
handel vertrieben. Einzelne Exemplare können - soweit nicht vergriffen - gegen
Unkostenerstattung beim Geodätischen Institut der RWTH Aachen (Mies-van-der-
Rohe-Str. 1, 52074 Aachen) bezogen werden. Die Hefte Nr. 1 -29 können auf An-
frage ausgeliefert werden. Die Hefte ab Nr. 64 stehen nur noch Online zur Verfü-
gung.

Nr. 30 PHILIPS, J.: Ein photogrammetrisches Aufnahmesystem zur
Untersuchung dynamischer Vorgänge im Nah-
bereich (Diss. 1981)2

Nr. 31 BUSCH, W.: Eigenschaften stationärer hydrostatischer Präzi-

sions-Höhenmeßsysteme für kontinuierliche
Langzeitbeobachtungen, untersucht an einem
neuentwickelten Schlauch-wagensystem (Diss.
1980)3

Nr. 32 FORAMITTI, H.: Bezugsebenen für Projektionen von Kulturgut-
beständen (1981)2

Nr. 33 REUTER, R.: Integralformeln der Einheitssphäre und harmo-
nische Splinefunktionen (Diss. 1982)3

Nr. 34 URBAN, G.; JANSEN, M. (Hrsg.): Dokumentation in der Archäo-
logie- Techniken, Methoden, Analysen. Veröf-
fentlichung zum Seminar am 5-6. Dezember
1981 in Aachen (1982)3

Nr. 35 WOLF, H.; RINNER, K.: Festkolloquium aus Anlaß des 70. Ge-
burtstages von o.Prof.Dr.techn. Fritz Löschner
am 27. Mai 19821

Nr. 36 KAHLER, D.: Untersuchungen zur Varianzschätzung von
Punktkoordinaten im terrestrisch photogram-
metrischen Stereomodell (Habil. -schrift 1984)3

Nr. 37 GOTTWALD, R.: Zur Genauigkeitssteigerung und Erstellung ei-
nes automatisierten Datenflusses beim trigono-
metrischen Nivellement mit kurzen Zielweiten
(Diss. 1985)3

Nr. 38 SCHWARZ, W.: Zur Ermittlung der integralen Temperatur der
Atmosphäre mit Ultraschall für Refraktionsbe-
stimmungen im Nahbereich (Diss. 1985)2

Nr. 39 BRAUER, H.: Clusteranalytische Methoden zur Strukturie-
rung einer städtischen Bodenpreissammlung
(Diss. 1986)2

Nr. 40 WITTE, B.; u.a.: Festschrift zur Vollendung des 65. Lebensjahres
und zur Emeritierung von o.Prof.Dr.-Ing. E.
Hektor (1986)2

Nr. 41 WÜLLER, H.: Entwicklung und Untersuchung eines Rotati-
onsnivellierinstrumentes und einer photoelek-
trischen Nivellierlatte zur Automatisierung des
geometrischen Nivellements (Diss. 1987)2

Nr. 42 SCHAFFELD, H.G.: Eine Finite-Elemente-Methode und ihre An-
wendung zur Erstellung von Digitalen Gelände-
modellen (Diss. 1987)1

Nr. 43 KAMPMANN, G.: Zur kombinativen Norm-Schätzung mit Hilfe
von L1-, L2-, und der Boskovic-Laplace- Me-
thode mit den Mitteln der Linearen Pro-
grammierung (Diss. 1988)3

Nr. 44 BENNING, W.: Programmsystem KAFKA - Komplexe Analy-
se flächenhafter Kataster-Aufnahmen, Modell
und Anwendung der Ausgleichung hybrider
Lagemessungen (2. Auflage 1989)3

Nr. 45 BENNING, W.: 3D-Adjustment of Hybrid Geodetic Measure-
ments (1990)3

Nr. 46 JAKOBS, M.: Entwicklung eines elektro-mechanischen Ali-
gniersystems zur meßtechnischen Erfassung
räumlicher Verformungszustände in der Bau-
werksüberwachung (Diss. 1990)2

Nr. 47 SCHOLZ, T.: Zur Kartenhomogenisierung mit Hilfe strenger

Ausgleichungsmethoden (Diss. 1992)2

Nr. 48 YIN, L.: Untersuchungen zur Arbeitsweise und Genau-
igkeit von elektrooptischen Distanzmessern
nach dem Impulslaufzeitverfahren
(Diss. 1992)2

Nr. 49 LEHMKÜHLER, H.: Die geodätische Deformationsanalyse als Mus-
tererkennungsaufgabe (Diss. 1992)2

Nr. 50 SPARLA, P.: Experimentelle Untersuchungen zur Ermittlung
des Brechungsindex der Atmosphäre mit Hilfe
von elektronischen Sensoren (Diss. 1993)2

Nr. 51 SCHMIDT, H.: Meßunsicherheit und Vermessungstoleranz bei
Ingenieurvermessungen (Diss. 1994)2

Nr. 52 SCHWERMANN, R.: Geradengestützte Bildorientierung in der Nah-
bereichsphotogrammetrie (Diss. 1995)2

Nr. 53 BENNING, W. (Hrsg.): 125 Jahre Geodäsie an der RWTH Aachen,

Festschrift (1995)3

Nr. 54 BRAESS, M.: Strukturbasierte Merkmalszuordnung in kurzen

stereoskopischen Videosequenzen (Diss. 1997)2

Nr. 55 AUSSEMS, T.: Positionsschätzung von Landfahrzeugen mittels

Kalman-Filterung aus Satelliten- und Koppel-
navigationsbeobachtungen (Diss. 1999)2

Nr. 56 MÜLLER, J.: Homogenisierung dreidimensionaler Szenarien

nach der Methode der kleinsten Quadrate (Diss.
1999)2

Nr. 57 LIU, Z.: Knowledge-based Text Recognition for the Au-
tomatic Interpretation of Reduced Scale Draw-
ings (Diss. 1999)2

Nr. 58 BERZEN, N.: Entwurf und Implementierung eines portablen
persistenten Objektspeichers für C++ in hetero-
genen Rechnerumgebungen (Diss. 2000)2

Nr. 59 BREZING, A.: Entwicklung eines Expertensystems zur

wissensbasierten Deformationsanalyse (Diss.
2000)2

Nr. 60 HETTWER, J.: Numerische Methoden zur Homogenisierung
großer Geodatenbestände (Diss. 2003)2

Nr. 61 SCHINDLER, R.: Wissensbasierte Extraktion semantischer In-

formationen aus Vermessungsrissen (Diss.
2004)2

Nr. 62 KAMPSHOFF, S.: Integration heterogener raumbezogener Objekte
aus fragmentierten Geodatenbeständen (Diss.
2005)³

Nr. 63 BECKER, R.: Differentialgeometrische Extraktion von 3D-
Objektprimitiven aus terrestrischen Laserscan-
nerdaten (Diss. 2005)²

Nr. 64 LANGE, J.: Mess- und Auswertungstechnik zur Riss- und
Faserdetektion bei Betonbauteilen (Diss. 2009)

Nr. 65 OSTERMEYER, L.: Zur effizienten Verarbeitung XML- repräsen-
tierter Massendaten in der Normbasierten Aus-
tauschschnittstelle (Diss. 2010)

Nr. 66 LICHTENSTEIN, M.: Strukturbasierte Registrierung von Punktwol-
ken unter Verwendung von Bild- und Lasers-
cannerdaten (Diss. 2011)

Nr. 67 BLANKENBACH J. (Hrsg.): Festschrift zur Emeritierung von Univ.
Prof. Dr.-Ing. W.Benning (2012)

Nr. 68 FOCKE, I.: Geometrische Strukturanalyse von Glasfasern
in Textilbeton (Diss. 2013)

Nr. 69 REAL EHRLICH, C.: Echtzeit-Positionierung für Fußgänger inner-
halb von Gebäuden auf Basis von Smartphone-
Sensoren (Diss. 2018)

Nr. 70 BLUT, C.: Mobile Augmented Reality for Semantic 3D
Models. A Smartphone-based Approach with
CityGML (Diss. 2019)

PREISE : 1)= EUR 10.00, 2)= EUR 12.00, 3)= EUR 15.00 zuzüglich gesetzlicher MwSt.
(STAND: 12/2018)

	Acknowledgements
	Summary
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Related Research
	1.3 Objectives and Questions
	1.4 Thesis Structure

	2 Fundamentals
	2.1 The Internet-of-Things (IoT)
	2.1.1 IoT Actors and Smart Things
	2.1.2 IoT Challenges and Opportunities
	2.1.3 IoT Architectures

	2.2 IoT Devices, Sensors and Actuators
	2.2.1 IoT Devices
	2.2.2 Sensors and Actuators
	2.2.3 Sensor Network (SN)

	2.3 Internet Communication
	2.3.1 Messaging Patterns in Distributed Architectures
	2.3.1.1 Request/Response
	2.3.1.2 Message Queuing
	2.3.1.3 Publish/Subscribe
	2.3.1.4 Notification (Observer Pattern)
	2.3.1.5 Data Streams

	2.3.2 Internet Protocol Suite

	2.4 M2M Communication Stack
	2.4.1 Wireless Communication in the IoT
	2.4.1.1 Cellular Networks
	2.4.1.2 WLAN
	2.4.1.3 WSN Protocols

	2.4.2 IoT Application Layer Protocols
	2.4.2.1 Hypertext Transfer Protocol (HTTP)/HTTPS
	2.4.2.2 Constrained Application Protocol (CoAP)
	2.4.2.3 Message Queuing Telemetry Transport (MQTT)
	2.4.2.4 Extensible Messaging and Presence Protocol (XMPP)
	2.4.2.5 Advanced Message Queuing Protocol (AMQP)

	2.5 IoT Information and Services
	2.5.1 OGC's SWE: a SOA for the Sensor Web
	2.5.2 SensorThings API: a Resource-Oriented Architecture for the IoT
	2.5.3 Event-driven Architectures & OGC's Eventing Work

	2.6 IoT Data Processing and Visualization
	2.6.1 IoT Data Processing
	2.6.2 IoT Data Visualization

	3 Geospatial Internet-of-Things
	3.1 Characteristics of a Geospatial IoT
	3.1.1 Spatial Nature and Modeling of Things
	3.1.2 Spatial Integration in IoT Systems

	3.2 Modeling Real-World Events
	3.2.1 Spatiotemporal Events in IoT Applications
	3.2.2 Spatiotemporal Modeling in GIS
	3.2.2.1 Stage One: The Snapshot Model
	3.2.2.2 Stage Two: The Object Model
	3.2.2.3 Stage Three: The Event Model

	3.2.3 Geospatial Processes, Events and States

	3.3 Temporal Component of Geospatial Processes
	3.3.1 Time Domain
	3.3.2 Granularity of Time
	3.3.3 Encodings of Temporal Data Types
	3.3.4 Temporal Relations of Geospatial Processes
	3.3.4.1 Point-Point Relations
	3.3.4.2 Interval-Interval Relations
	3.3.4.3 Interval-Point Relations

	3.4 Spatial Component of Geospatial Processes
	3.4.1 Spatial Referencing
	3.4.1.1 Indirect Georeferencing System
	3.4.1.2 Direct Georeferencing System

	3.4.2 Fundamentals of Geospatial Data
	3.4.3 Encodings of Geospatial Objects
	3.4.4 Topological Relations of Geometries
	3.4.4.1 Four-Intersection Model (4IM)
	3.4.4.2 Nine-Intersection Model (9IM)
	3.4.4.3 Dimensionally Extended Nine-Intersection Model (DE-9IM)

	3.5 Architecture of the Geospatial IoT
	3.5.1 GeoEvent-driven Architecture for a Geospatial IoT
	3.5.2 GeoPipe Concept
	3.5.2.1 GeoPipe Requirements
	3.5.2.2 Subscribing to GeoPipes

	3.5.3 GeoEvent Processing & GeoStreams

	4 Geospatial MQTT (GeoMQTT)
	4.1 Geospatial IoT Application Protocol Evaluation
	4.2 MQTT Details
	4.2.1 Topic-based Publish/Subscribe Model
	4.2.2 MQTT Control Packets
	4.2.3 Features
	4.2.3.1 QoS
	4.2.3.2 Persistent Session
	4.2.3.3 Retained Messages
	4.2.3.4 Last Will and Testament
	4.2.3.5 Keep Alive

	4.2.4 MQTT over WebSockets
	4.2.5 MQTT for Sensor Networks (MQTT-SN)

	4.3 GeoMQTT Extension
	4.3.1 GeoEvents with GEOPUBLISH Packet
	4.3.2 GeoSubscription with GEOSUBSCRIBE Packet
	4.3.2.1 Temporal Filter
	4.3.2.2 Spatial Filter

	4.3.3 Unsubscribing from GeoSubscriptions

	4.4 GeoMQTT Implementations
	4.4.1 GeoMQTT Broker
	4.4.2 GeoMQTT Clients

	4.5 GeoMQTT-SN
	4.5.1 GEOPUBLISH in GeoMQTT-SN
	4.5.2 GEOSUBSCRIBE & GEOUNSUBSCRIBE in GeoMQTT-SN
	4.5.3 Registering Geometries by GEOMREGISTER
	4.5.4 Implementation of Gateway and Clients

	5 GeoMQTT Evaluation
	5.1 Evaluation Objectives
	5.2 Modeling of GeoEvents & GeoSubscriptions
	5.2.1 Geospatial IoT Scenarios
	5.2.1.1 Stationary Devices - Structural Monitoring
	5.2.1.2 Mobile Devices - Environmental Monitoring

	5.2.2 Spatiotemporal Modeling
	5.2.3 GeoEvent Encoding Comparison
	5.2.4 GeoSubscription Encoding Comparison

	5.3 Broker Performance Testing & Scaling
	5.3.1 Testbed Specifications
	5.3.2 Performance Test Plans
	5.3.3 Performance Test Results
	5.3.3.1 PubQoS1 & GeoPubQoS1
	5.3.3.2 PubSub & GeoPubGeoSub
	5.3.3.3 GeoPubGeoSubmultisub
	5.3.3.4 GeoPubGeoSubtransform & GeoPubGeoSubmultisub,transform
	5.3.3.5 GeoPubGeoSubmultisub,transform,scale

	5.4 Discussion on Evaluation Results

	6 GeoMQTT Information & Services
	6.1 GeoMQTT Plug-in for QGIS
	6.1.1 QGIS and its Plug-in System
	6.1.2 GeoMQTT in QGIS Desktop
	6.1.3 Use Cases and Future Use

	6.2 A RESTful Access Point to GeoMQTT
	6.2.1 REST and the Geospatial IoT
	6.2.2 Bridging GeoMQTT and REST
	6.2.3 REST-GeoMQTT Bridge Web Application

	6.3 Bridging the SWE Standards
	6.3.1 Interoperability Gap
	6.3.2 Closing the Gap with the Sensor Bus
	6.3.3 Sensor Bus in the EarlyDike Project
	6.3.4 GeoEvent Bus Extension

	6.4 Enhancing the WPS Interface with GeoPipes Support
	6.4.1 Introduction in Real-Time Geoprocessing
	6.4.2 OGC WPS Interface and Real-Time Processing
	6.4.3 Integrating GeoPipes in the WPS Interface
	6.4.4 Implementation and Sample Processes

	7 Conclusion & Future Work
	7.1 Achievements and Reflection on Research Objectives
	7.2 Future Work

	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables

