A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Computing With Contextual Numbers
[article]
2014
arXiv
pre-print
Self Organizing Map (SOM) has been applied into several classical modeling tasks including clustering, classification, function approximation and visualization of high dimensional spaces. The final products of a trained SOM are a set of ordered (low dimensional) indices and their associated high dimensional weight vectors. While in the above-mentioned applications, the final high dimensional weight vectors play the primary role in the computational steps, from a certain perspective, one can
arXiv:1408.0889v2
fatcat:7tvwngvm7jahpm3odvleivfpyu