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Abstract
The dismal prognosis of glioblastoma multiforme (GBM) is mainly due to the poor response of GBM patients

to any therapeutic modalities, which include ionizing radiation and DNA-alkylating agents. In the last few years,
the important role of the DNA damage response (DDR) pathway in tumor formation and modulation of
therapeutic response has been appreciated. Interestingly, several of the genetic alterations commonly found in
GBMs (such as epidermal growth factor receptor amplification and PTEN inactivation) have also recently been
shown to regulate the activity of the DNA repair machinery and, consequently, the response to DNA-damaging
agents used routinely in the clinic. In this review, we focus on some of these findings that suggest that at least
some of the pathways driving GBM formation could be directly responsible for the therapy resistance of this
tumor type. Possible therapeutic approaches exist that may either overcome or take advantage of these GBM
genetic alterations to improve the response of these tumors to DNA-damaging therapy. Cancer Res; 71(18);
1–5. �2011 AACR.

Introduction

Glioblastoma multiforme (GBM) is the most frequent can-
cer of the central nervous system in adults and is among the
most aggressive and lethal tumor types. GBM patients routi-
nely undergo maximal tumor mass resection followed by
concurrent radiotherapy and chemotherapy, using the alky-
lating agent temozolomide (TMZ). Despite decades of
research efforts, GBM patients remain refractory to current
treatment modalities and have a dismal prognosis. Gaining
insights into the pathways that determine this poor response
to therapy will be instrumental for the development of new
therapeutic modalities. Resistance to radiation and che-
motherapy characterizes many cancer types; however, it is
not clear whether resistance is acquired during tumor pro-
gression or if it is intrinsically associated with the genetic
events that lead to the tumor formation in the first place. In
this review, we highlight some of the recent findings, which
suggest that the genetic alterations characterizing GBM gen-
omes might also be responsible for the poor treatment
response of this tumor type by directly modulating the activity
of the DNA damage response (DDR), namely, the DNA damage
checkpoint and the DNA repair machinery. This "DDR-centric"
view of glioma biology and response to therapy may provide
additional insight into this particularly vexing problem. Cur-

rently, several laboratories are exploring the possibility of
manipulating the DDR to cause selective tumor cell death
through catastrophic genomic instability; therefore, we also
focus here on some of the possible therapeutic modalities that
could overcome and/or exploit GBM genetic alterations to
improve the response to radiotherapy and chemotherapy.

In response to DNA damage, cells activate the phosphoi-
nositide 3-kinase (PI3K)–related kinases (PI3KK) ATM, ATR,
and DNA-dependent protein kinase (DNA-PK), which in turn
phosphorylate multiple downstream substrates, including the
effector kinases Chk1 and Chk2, resulting in cell-cycle check-
point initiation and/or apoptosis. The activation of DDR
signaling also requires several accessory proteins known as
checkpoint mediators or adaptors, including 53BP1, BRCA1,
and MDC1. Recently, it has been proposed that the DDR acts
as a barrier against tumor progression, in which early malig-
nant lesions have to inactivate p53 or other components of the
DDR to progress to a more aggressive status.

The genes encoding components of the ATM/Chk2 and the
ATR/Chk1 pathways are subjected to frequent copy-number
loss in GBM patients (Fig. 1), with heterozygous loss of CHEK2
being the most frequent event (approximately 20%; ref. 1).
Somatic cell gene transfer with the RCAS/tv-a system and
platelet-derived growth factor (PDGF)–induced glioma gen-
eration have been used to show that some of the essential
molecules of the DDR, such as ATM, Chk2, and p53, are
required for glioma tumor suppression in mice and that loss
of any of those genes not only accelerates tumor formation but
also leads to a more aggressive phenotype, increasing the
frequency of high-grade tumors (GBMs). Moreover, Chk2-null
gliomas show defects in both apoptotic response and cell-
cycle checkpoints, which prevent an ionizing radiation (IR)–
mediated survival benefit observed in control mice. The
evidence points to an indispensible role of Chk2 in IR response
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in gliomas, but it may not necessarily be directly extended to
other molecules of the DDR pathway, because of the intricacy
of this signaling pathway. Inhibition of the ATM kinase (the
upstream Chk2 activator that acts in concert and in parallel
with Chk2 in DNA-damage checkpoint modulation) leads to
radiosensitization of human glioma cells in vitro (2, 3). Given
the vast collection of proteins that are phosphorylated by ATM
(more than 700), it is very difficult to define which of its
downstream targets mediates the increased sensitivity to IR in
cells treated with an ATM inhibitor. However, one likely
function of ATM that contributes to this phenotype is its
ability to modulate the double-strand break (DSB) repair via
homologous recombination (HR; ref. 3). DSBs are the most
toxic DNA lesions, and failure to repair them could result in
the loss of genetic information and the generation of danger-
ous genomic rearrangements, which may ultimately lead to
cell death. Treatment of the U87 glioma cell line with caffeine
or more specific ATM inhibitors (KU-55933 and KU-60019)
significantly reduced HR efficiency (2–4) and also affected
AKT- and extracellular signal regulated kinase (ERK)–
mediated prosurvival signaling and cell migration and/or

invasion (2). However, the efficacy of pharmacologic inhibition
of ATM in combination with IR remains to be evaluated on
GBMs in vivo. Moreover, p53 status is likely to determine the
response of such a therapeutic strategy, with p53-functional
tumors being resistant and the p53-mutant tumors being
sensitive to ATM inhibition (5).

The alkylating agent TMZ is administered to GBM patients
concurrently with radiotherapy. TMZ leads to the formation of
a wide spectrum of methyl adducts typically represented by N-
methylpurines, which are rapidly repaired by base excision
repair (BER). The cytotoxicity of TMZ is thought to be
mediated mainly by the formation of O6-methylguanine (O6-
meG) DNA adducts. These methyl groups are normally
removed by the methyl guanine methyl transferase (MGMT)
enzyme, whereas the unrepaired O6-meGs trigger a futile
mismatch repair (MMR) cycle, which eventually leads to
DSB formation that induces the activation of both ATM-
and ATR-mediated signaling (6). A very prominent effect of
TMZ treatment in glioma cells in vitro is a Chk1- and Chk2-
dependent G2 to M–cell-cycle arrest (7, 8). It has been shown
that Chk2 gene silencing prevents the TMZ-induced G2 arrest

Figure 1.Multiple signaling pathways altered in GBM tumors modulate the DDR. Genes with copy-number loss and/or inactivating mutations or copy-number
gain and/or activating mutations are presented in green or red, respectively. See text for details.
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(8), whereas ATR gene silencing or pharmacologic inhibition
of Chk1 increases TMZ sensitivity (7, 9). The most common
mechanism of TMZ resistance in GBM patients is MGMT
expression, and MGMT promoter silencing by methylation
corresponds to a better therapeutic response to TMZ. A
deeper knowledge of the signaling pathways activated by
TMZ treatment and how the DNA damage induced by
TMZ treatment is repaired will be required to increase its
therapeutic efficacy. Inhibition of PARP, a key component of
BER, represents an attractive treatment approach in combi-
nation with different chemotherapy agents, including TMZ,
and it is currently showing promising potential as mono-
therapy in HR-deficient tumors (such as BRCA-mutant breast
cancer cells). Various PARP inhibitors are in phase I and II
clinical trials at the moment, and several of these inhibitors
(for example ABT-888, CEP-6800, AG014699, and GP15427)
have been successfully used in preclinical mouse xenograft
glioma models (10).
The epidermal growth factor receptor (EGFR) is one of the

most frequently altered receptor tyrosine kinases (RTK) in
GBM patients. It is amplified in approximately 40% of GBM
samples overall and in 80% of GBMs of the classical subtype,
and the variant III deletion of the extracellular domain (EGFR
vIII mutant), the most commonly described event that leads to
EGFR activation, is present in about half of these EGFR-
amplified tumors. RTK signaling hyperactivation seems to
be one of the initial oncogenic events in the majority of
GBM, most probably largely mediated through the PI3K/
Akt/mTOR and Ras/mitogen-activated protein kinase (MAPK)
downstream signaling pathway (11). Various studies have
shown that the activation of the PI3K/Akt and Ras/MAPK
signaling pathways in cancer cells is significantly associated
with radiotherapy resistance, either through the modulation
of cell survival signaling or, most importantly for the focus of
this review, by direct regulation of the DNA repair machinery.
The initial evidence that indicated a possible role of EGFR in

regulation of DNA repair was published more than a decade
ago (12), and it showed the direct interaction between EGFR
and DNA-PK, one of the key components of the nonhomol-
gous end-joining (NHEJ) machinery. This initial work was
extended in the context of radiation treatment with reports
showing that both IR and cisplatin induces the translocation
of EGFR into the nucleus, where it interacts with DNA-PK and,
consequently, results in increased DNA-PK activity (13). This
nuclear import of EGFR was inhibited by preincubation with
the C225 monoclonal antibody (cetuximab), with a conse-
quent radiosensitization of both lung (A549) and breast (MDA
MB231) cancer cell lines, as measured by clonogenic-forming
ability and resolution of gH2AX IR-induced foci (IRIF), a
standard marker of DSBs (14). Analogously, cetuximab
enhanced in vitro and, more importantly, in vivo radiosensi-
tivity in squamous cell carcinoma (SCC) cells of the head and
neck (15, 16). Moreover, EGFR inhibition by gefinitib treat-
ment leads to a synergistic increase in growth inhibition when
combined with other DNA-damaging agents (cisplatin and
etoposide), rather than IR, in a human breast cancer cell line
(MCF-7; ref. 17). When studied in more detail, EGFR signaling
seems to positively regulate both HR and NHEJ in U87 glioma

cells (18), and treatment with EGF ligand induces a dose-
dependent increase in HR and NHEJ, which is reduced to 50%
of basal levels in the presence of a specific EGFR inhibitor
(AG1478). Similarly, activation of EGFR signaling by the
expression of EGFR vIII mutant leads to more rapid resolution
of gH2AX IRIF and an increase in DNA repair efficiency,
whereas the opposite results are obtained when EGFR is
inhibited by the EGFR-CD533 dominant-negative mutant. In
sum, the results are consistent with the argument that DSB
repair is regulated at multiple levels by growth factor signaling
and that modulation of DNA repair by EGFR vIII might
contribute to the radioresistance of GBMs that carry this
mutation. In further support of this idea, a recent report
(19) has shown that EGFR vIII expression in mouse astrocytes
and human glioma cells (U87) leads to radioresistance by
promoting DNA-PK activation and DSB repair, perhaps as a
consequence of hyperactivated PI3K/Akt signaling. Mouse
orthotopic tumors expressing EGFR vIII are refractory to
radiation therapy, continuing to grow after whole-brain radia-
tion, with little effect on overall survival. In U87 cells expres-
sing EGFR vIII, blocking the receptor with the anti-EGFR
monoclonal antibody mab-806 reduces the radioresistance
of these glioma cells and leads to a reduction of tumor growth,
with a concomitant decrease in the tumor microvascular
density (20).

Taken together, the data discussed here suggest that EGFR
signaling, either directly through the interaction with the DNA
repair machinery or indirectly through the activation of PI3K/
Akt and Ras/MAPK signaling pathways (Fig. 1), modulates
sensitivity to radiation. Therefore, combining radiotherapy
with inhibition of EGFR signaling might achieve a better
therapeutic outcome, at least in the subset of glioma patients
in which this signaling is activated.

Loss of function of the tumor suppressor gene PTEN, mainly
by gene deletion or mutation, is a very frequent genetic
aberration in GBM patients (approximately 35%). In addition
to the well-established role of PTEN in the modulation of the
PI3K/Akt/mTOR signaling pathway by the regulation of the
intracellular levels of phosphatidylinositol 3,4,5-trisphosphate,
PTEN exerts an essential role in maintaining chromosomal
integrity via its ability to regulate centromere stability (in a
phosphatase-independent manner), DNA DSB repair (possibly
through the regulation of Rad51 expression), and Chk1 loca-
lization (21). PTEN regulation of HR results in defects in Rad51
foci formation and DSB repair. Comparing PTEN null cells
with their isogenic cell lines has shown that the HR deficiency
caused by PTEN loss sensitizes tumor cells to PARP inhibitors
both in vitro and in vivo (22, 23). Analogously, PTEN-null
astrocytes, as well as human glioma lines, have a compro-
mised HR pathway (because of reduced levels of Rad51 para-
logs), which confers sensitivity to N-methyl-N'-nitro-N-
nitrosoguanidine (MNNG), a functional analog of TMZ, and
renders them sensitive to the PARP inhibition (24). However,
at the same time, PTEN loss strongly activated PI3K signaling
and resulted in increased resistance to IR, as assayed by colony
survival (24, 25). Therefore, PTEN status per se will not be
sufficient to predict therapy response in GBM patients
because IR and TMZ are used concomitantly.
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The signaling abnormalities that drive the other main GBM
subsets include PDGF receptor (PDGFR; in the case of the
proneural GBMs) and loss of the Ras negative regulator
neurofibromatosis type 1 (NF1) gene (in the case of the
mesenchymal GBMs; ref. 11). Although less is known about
the connection between these pathways and the DDR, some
data link them. The PDGF signaling drives tumor formation in
a subset of GBMs (approximately 25%), determined either by
genetic alterations (such as gene amplification, intrachromo-
somal deletion, and activating point mutation) of the PDGFRA
gene or by overexpression the PDGF ligand (26). Even though
direct modulation (like the one observed for EGFR) of the DNA
repair machinery by PDGFR has not been described to date,
various reports show that treatment with the PDGFR inhibitor
imatinib increases radiation sensitivity in glioma cells in vitro
and in glioma xenograft mouse models in vivo (27). As men-
tioned previously in this review, activation of the Ras/MAPK
signaling pathways in cancer cells has been associated with
radiotherapy resistance; however, it is still unknown whether
NF1 inactivation in GBM patients affects the DNA damage
checkpoints and/or DNA repair and, ultimately, the treatment
response to DNA-damaging agents.

Concluding Remarks

In this review, we have taken the view that the DDR is a
central component in the pathways that lead to glioma
formation and progression. This DDR-centric view of the
world, although clearly biased toward the role of this path-
way in glioma biology, provides an alternative view of the
connections between these known drivers of tumor forma-
tion and assumed contributors to therapeutic resistance. In
so doing, we feel that insight to the system as a whole is
provided. We have discussed how some of the genetic
alterations that characterize the GBM genome can modu-
late, positively and/or negatively, the response to a given
DNA-damaging agent (such as IR or TMZ), and it seems that
a balance between the cell survival signals and an effective
DNA repair will determine the ultimate outcome to a
specific therapy. The DDR is a very convoluted signaling
pathway, composed of several hundred proteins, few of
which are altered in GBM patients (ref. 1; M. Squatrito
and colleagues, manuscript in preparation). A better under-
standing of the molecular mechanisms that protect cells
from the response to a specific DNA-damaging therapy is
required to develop new treatments that could overcome
this resistance.

It is important to keep in mind that GBM is a very hetero-
geneous disease composed of multiple subtypes characterized
by distinctive genetic alterations that lead to the activation of
different signaling pathways. These subtypes are likely to
respond in different ways to a given therapy. As an example,
the mesenchymal GBM subclass seems more likely to respond
to radiotherapy than to alkylating agents (BCNU or TMZ),
whereas classical GBM are more prone to respond to alkylat-
ing agents than to radiotherapy (28). In addition, any GBM is
composed of multiple cell types that are likely to have a
heterogeneous sensitivity to any specific treatment. For
instance, GBM stem-like cells have been shown to be more
radioresistant because of their ability to repair the radiation-
induced DNA damage more effectively (29), although this
initial evidence has recently been challenged (30). Moreover,
similar to what is seen in SHH-driven medulloblastoma, cells
that reside in the so-called perivascular niche of PDGF-
induced gliomas (some of which seem to have stem-like
characteristics) seem to be more resistant to IR.

The studies discussed in this review suggest that there is a
strong link between the pathways involved in the process of
gliomagenesis and the tumor's resistance to the DNA-dama-
ging agents routinely used in the clinic (such as IR and TMZ).
Given the intricate link between these 2 complex biological
pathways, it is not surprising that these tumors are highly
resistant to the standard cancer treatments that rely on DNA
damage. Moreover, future therapeutic strategies for these
tumors will need to take into account the effects of the
pathways that drive the tumors on the characteristics that
make them inherently resistant to therapy.
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