Algorithms for constrained k-nearest neighbor queries over moving object trajectories

Yunjun Gao, Baihua Zheng, Gencai Chen, Qing Li
<span title="2009-04-28">2009</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/6knthe2oxrezfaewvjo3sm4jpu" style="color: black;">Geoinformatica</a> </i> &nbsp;
An important query for spatio-temporal databases is to find nearest trajectories of moving objects. Existing work on this topic focuses on the closest trajectories in the whole data space. In this paper, we introduce and solve constrained k-nearest neighbor (CkNN) queries and historical continuous CkNN (HCCkNN) queries on R-tree-like structures storing historical information about moving object trajectories. Given a trajectory set D, a query object (point or trajectory) q, a temporal extent T,
more &raquo; ... nd a constrained region CR, (i) a CkNN query over trajectories retrieves from D within T, the k (≥ 1) trajectories that lie closest to q and intersect (or are enclosed by) CR; and (ii) an HCCkNN query on trajectories retrieves the constrained k nearest neighbors (CkNNs) of q at any time instance of T. We propose a suite of algorithms for processing CkNN queries and HCCkNN queries respectively, with different properties and advantages. In particular, we thoroughly investigate two types of CkNN queries, i.e., CkNN P and CkNN T , which are defined with respect to stationary query points and moving query trajectories, respectively; and two types of HCCkNN queries, namely, HCCkNN P and HCCkNN T , which are continuous Geoinformatica (2010) 14:241-276 counterparts of CkNN P and CkNN T , respectively. Our methods utilize an existing datapartitioning index for trajectory data (i.e., TB-tree) to achieve low I/O and CPU cost. Extensive experiments with both real and synthetic datasets demonstrate the performance of the proposed algorithms in terms of efficiency and scalability.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s10707-009-0084-5">doi:10.1007/s10707-009-0084-5</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/aaaf27oqozcsdnktbtth626qg4">fatcat:aaaf27oqozcsdnktbtth626qg4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200321173852/https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?referer=&amp;httpsredir=1&amp;article=2983&amp;context=sis_research" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/7b/82/7b821b836adfc7eb0ed598677ef676f88126e691.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s10707-009-0084-5"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>