Mechanics of cuticular elastic energy storage in leg joints lacking extensor muscles in arachnids

A. T. Sensenig
2003 Journal of Experimental Biology  
Certain leg joints in arachnids lack extensor muscles and have elastically deformable transarticular sclerites spanning their arthrodial membranes, an arrangement consistent with a model in which flexor muscles load transarticular sclerites during flexion and energy from elastic recoil is used for extension. This study quantifies the potential contribution of elastic recoil to extension torque at joints of the fourth leg of representative arachnids. Extension torques of isolated joints with and
more » ... ted joints with and without transarticular sclerites were measured as the joint was rotated through angles and at angular velocities comparable with those used by walking animals. The procedure was repeated with the joint subjected to different internal fluid pressures in order to assess the potential role of hydraulically induced extension. The efficiency of elastic energy storage (resilience) in the absence of internal fluid pressure was 70-90% for joints with well-developed transarticular sclerites, and the magnitude of torque was similar to those produced by different joint extension mechanisms in other arthropods. Increased internal fluid pressure acted synergistically with transarticular sclerites in some joints but had little or no effect in others. Joints that lacked both extensor muscles and transarticular sclerites appeared to be specialized for hydraulic extension, and joints operated by antagonistic muscles lacked apparent specializations for either elastic or hydraulic extension. It is well known that elastic energy storage is a significant contributor to propulsion in running vertebrates and certain arthropods, where elastic elements are loaded as the center of mass falls during one phase of the locomotor cycle. However, transarticular sclerites are apparently loaded by contraction of flexor muscles when the leg is not in contact with the substratum. Hence the mechanism of a transarticular sclerite is more similar to the flight and jumping mechanisms of other arthropods than to running vertebrates. The evolutionary significance and potential mechanical advantages of the transarticular elastic mechanism are discussed.
doi:10.1242/jeb.00182 pmid:12517993 fatcat:pxg6zfebknfcjj7zrm4vzl4rue