Unsupervised 3D Motion Summarization Using Stacked Auto-Encoders

Eftychios Protopapadakis, Ioannis Rallis, Anastasios Doulamis, Nikolaos Doulamis, Athanasios Voulodimos
2020 Applied Sciences  
In this paper, a deep stacked auto-encoder (SAE) scheme followed by a hierarchical Sparse Modeling for Representative Selection (SMRS) algorithm is proposed to summarize dance video sequences, recorded using the VICON Motion capturing system. SAE's main task is to reduce the redundant information embedding in the raw data and, thus, to improve summarization performance. This becomes apparent when two dancers are performing simultaneously and severe errors are encountered in the humans' point
more » ... he humans' point joints, due to dancers' occlusions in the 3D space. Four summarization algorithms are applied to extract the key frames; density based, Kennard Stone, conventional SMRS and its hierarchical scheme called H-SMRS. Experimental results have been carried out on real-life dance sequences of Greek traditional dances while the results have been compared against ground truth data selected by dance experts. The results indicate that H-SMRS being applied after the SAE information reduction module extracts key frames which are deviated in time less than 0.3 s to the ones selected by the experts and with a standard deviation of 0.18 s. Thus, the proposed scheme can effectively represent the content of the dance sequence.
doi:10.3390/app10228226 fatcat:aagpzlc3pbbirfhnz2c7kkbv3i