Some Results on Greedy Embeddings in Metric Spaces

Tom Leighton, Ankur Moitra
2009 Discrete & Computational Geometry  
Geographic Routing is a family of routing algorithms that uses geographic point locations as addresses for the purposes of routing. Such routing algorithms have proven to be both simple to implement and heuristically effective when applied to wireless sensor networks. Greedy Routing is a natural abstraction of this model in which nodes are assigned virtual coordinates in a metric space, and these coordinates are used to perform point-to-point routing. Here we resolve a conjecture of
more » ... u and Ratajczak that every 3-connected planar graph admits a greedy embedding into the Euclidean plane. This immediately implies that all 3-connected graphs that exclude K 3,3 as a minor admit a greedy embedding into the Euclidean plane. We also prove a combinatorial condition that guarantees non-embeddability. We use this result to construct graphs that can be greedily embedded into the Euclidean plane, but for which no spanning tree admits such an embedding.
doi:10.1007/s00454-009-9227-6 fatcat:asu4bmoiizcsvawzoyguug74qa