A Novel Endocrine Composite Fuzzy Control Strategy of Electromagnetic Hybrid Suspension

Farong Kou, Qiangqiang Jing, Yawei Gao, Jianghao Wu
2020 IEEE Access  
To effectively improve the vehicle suspension dynamic performances, minimizing discomfort of passengers and realize vibration energy recovery, a new kind of electromagnetic hybrid suspension (EMHS) system with parallel structure of linear motor and solenoid valve shock absorber is put forward. The linear motor actuator can work at the active state for active control or energy-regenerative state for energy recovery, the solenoid valve shock absorber work at the semi-active state for damping
more » ... ol. Firstly, for the analysis of the hybrid suspension, a quarter dynamic model of EMHS is established. Meanwhile, the mathematical models of linear motor actuator and solenoid valve shock absorber are founded, respectively. Then, for the better suspension control effect based on fuzzy control strategy, a novel endocrine composite fuzzy control strategy is designed. By learning the biological endocrine hormone regulation mechanism, the endocrine control with long feedback and ultra-short feedback is designed. The control laws of the fuzzy controller and endocrine controller are, respectively, designed. Finally, the simulation analysis of suspension dynamic performances and energy-regenerative characteristics is done, respectively. At the same time, the bench test is carried out based on the rapid control prototype with dSPACE platform. The results show the control effect of endocrine composite fuzzy control is better than that of fuzzy control, which improves the dynamic performances. Moreover, part of vibration energy is recovered.
doi:10.1109/access.2020.3039845 fatcat:5ojwjhv6jrczpfnjzjs3kfuv3y