De novo mutations in domestic cat are consistent with an effect of reproductive longevity on both the rate and spectrum of mutations [article]

Richard J Wang, Muthuswamy Raveendran, R Alan Harris, William J Murphy, Leslie A Lyons, Jeffrey Rogers, Matthew W. Hahn
2021 bioRxiv   pre-print
The mutation rate is a fundamental evolutionary parameter with direct and appreciable effects on the health and function of individuals. Here, we examine this important parameter in the domestic cat, a beloved companion animal as well as a valuable biomedical model. We estimate a mutation rate of 0.86 × 10-8 per bp per generation for the domestic cat (at an average age of 3.8 years). We find evidence for a strong paternal age effect, with more mutations transmitted by older sires. Our analyses
more » ... uggest that the cat and the human have accrued similar numbers of mutations in the germline before reaching sexual maturity. The per-generation mutation rate in the cat is slightly lower than what has been observed in humans, but consistent with the shorter generation time in the cat. Using a model of reproductive longevity, which takes into account differences in the reproductive age and time to sexual maturity, we are able to explain much of the difference in per-generation rates between species. We further apply our reproductive longevity model in a novel analysis of mutation spectra and find that the spectrum for the cat resembles the human mutation spectrum at a younger age of reproduction. Together, these results implicate changes in life-history as a driver of mutation rate evolution between species. As the first direct observation of the paternal age effect outside of primates, our results also suggest a phenomenon that may be universal among mammals.
doi:10.1101/2021.04.06.438608 fatcat:dfg3gec4cfaive6y7kjo43vu24