A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit <a rel="external noopener" href="http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC3843953&blobtype=pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions
<span title="2013-05-30">2013</span>
<i title="Oxford University Press (OUP)">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/6oeltljhrzfq7brjdtp2wqehpu" style="color: black;">Biometrika</a>
</i>
A dynamic treatment regime is a list of sequential decision rules for assigning treatment based on a patient's history. Q-and A-learning are two main approaches for estimating the optimal regime, i.e., that yielding the most beneficial outcome in the patient population, using data from a clinical trial or observational study. Q-learning requires postulated regression models for the outcome, while A-learning involves models for that part of the outcome regression representing treatment contrasts
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/biomet/ast014">doi:10.1093/biomet/ast014</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/24302771">pmid:24302771</a>
<a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3843953/">pmcid:PMC3843953</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/waa54cpndncj5jegplyvs7th7q">fatcat:waa54cpndncj5jegplyvs7th7q</a>
</span>
more »
... and for treatment assignment. We propose an alternative to Q-and A-learning that maximizes a doubly robust augmented inverse probability weighted estimator for population mean outcome over a restricted class of regimes. Simulations demonstrate the method's performance and robustness to model misspecification, which is a key concern.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200503172308/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC3843953&blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/3c/37/3c37abf4af01f430b1939cef58c850ccfaa5af56.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/biomet/ast014">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
oup.com
</button>
</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843953" title="pubmed link">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
pubmed.gov
</button>
</a>