A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit <a rel="external noopener" href="https://surfer.nmr.mgh.harvard.edu/ftp/articles/2010/2010_-_Zollei_et_al._-_NeuroImage.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Improved tractography alignment using combined volumetric and surface registration
<span title="">2010</span>
<i title="Elsevier BV">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/sa477uo7lveh7hchpikpixop5u" style="color: black;">NeuroImage</a>
</i>
Previously we introduced an automated high-dimensional non-linear registration framework, CVS, that combines volumetric and surface-based alignment to achieve robust and accurate correspondence in both cortical and sub-cortical regions (Postelnicu et al., 2009) . In this paper we show that using CVS to compute cross-subject alignment from anatomical images, then applying the previously computed alignment to diffusion weighted MRI images, outperforms state-of-the-art techniques for computing
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2010.01.101">doi:10.1016/j.neuroimage.2010.01.101</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/20153833">pmid:20153833</a>
<a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2847021/">pmcid:PMC2847021</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/4kezark5jjfm7ldh6kcpwuzd6a">fatcat:4kezark5jjfm7ldh6kcpwuzd6a</a>
</span>
more »
... s-subject alignment directly from the DWI data itself. Specifically, we show that CVS outperforms the alignment component of TBSS in terms of degree-of-alignment of manually labeled tract models for the uncinate fasciculus, the inferior longitudinal fasciculus and the corticospinal tract. In addition, we compare linear alignment using FLIRT based on either fractional anisotropy or anatomical volumes across-subjects, and find a comparable effect. Together these results imply a clear advantage to aligning anatomy as opposed to lower resolution DWI data even when the final goal is diffusion analysis.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170809002805/https://surfer.nmr.mgh.harvard.edu/ftp/articles/2010/2010_-_Zollei_et_al._-_NeuroImage.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/7a/4e/7a4edeb60aef9378e47743d433086a22933909b7.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2010.01.101">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
elsevier.com
</button>
</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847021" title="pubmed link">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
pubmed.gov
</button>
</a>