Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node [article]

Alfio Di Mauro, Francesco Conti, Pasquale Davide Schiavone, Davide Rossi, Luca Benini
<span title="2020-07-17">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Binary Neural Networks (BNNs) have been shown to be robust to random bit-level noise, making aggressive voltage scaling attractive as a power-saving technique for both logic and SRAMs. In this work, we introduce the first fully programmable IoT end-node system-on-chip (SoC) capable of executing software-defined, hardware-accelerated BNNs at ultra-low voltage. Our SoC exploits a hybrid memory scheme where error-vulnerable SRAMs are complemented by reliable standard-cell memories to safely store
more &raquo; ... ritical data under aggressive voltage scaling. On a prototype in 22nm FDX technology, we demonstrate that both the logic and SRAM voltage can be dropped to 0.5Vwithout any accuracy penalty on a BNN trained for the CIFAR-10 dataset, improving energy efficiency by 2.2X w.r.t. nominal conditions. Furthermore, we show that the supply voltage can be dropped to 0.42V (50% of nominal) while keeping more than99% of the nominal accuracy (with a bit error rate ~1/1000). In this operating point, our prototype performs 4Gop/s (15.4Inference/s on the CIFAR-10 dataset) by computing up to 13binary ops per pJ, achieving 22.8 Inference/s/mW while keeping within a peak power envelope of 674uW - low enough to enable always-on operation in ultra-low power smart cameras, long-lifetime environmental sensors, and insect-sized pico-drones.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2007.08952v1">arXiv:2007.08952v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wj5ecbpaejb7dimlbbz3maomjy">fatcat:wj5ecbpaejb7dimlbbz3maomjy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200928170348/https://arxiv.org/pdf/2007.08952v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/2b/1d/2b1d392cde63a2398d490a665d6c56f113725a19.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2007.08952v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>