Use of Co-Solvents in Hydrothermal Liquefaction (HTL) of Microalgae

Yang Han, Kent Hoekman, Umakanta Jena, Probir Das
2019 Energies  
This study reviewed and summarized the literature regarding the use of alcohols during hydrothermal liquefaction (HTL) of algal biomass feedstocks. The use of both pure alcohols and alcohol-water co-solvents were considered. Based upon this review, laboratory experiments were conducted to investigate the impacts of different alcohol co-solvents (ethanol, isopropanol, ethylene glycol, and glycerol) on the HTL treatment of a specific saltwater microalga (Tetraselmis sp.) at two temperatures: 300
more » ... C and 350 °C. Based on their performance, two co-solvents, isopropanol and ethylene glycol, were selected to explore the effects of varying solvent concentrations and reaction temperatures on product yields and biocrude properties. The type and amount of added alcohol did not significantly affect the biocrude yield or composition. Biocrude yields were in the range of 30–35%, while a nearly constant yield of 21% insoluble products was observed, largely resulting from ash constituents within the algal feedstock. The benefits of using alcohol co-solvents (especially isopropanol) were the reduced viscosity of the biocrude products and reduced rates of viscosity increase with biocrude aging. These effects were attributed mainly to the physical properties of the co-solvent mixtures (solubility, polarity, density, etc.) rather than chemical processes. Under the reaction conditions used, there was no evidence that the co-solvents participated in biocrude production by means of hydrogen donation or other chemical processes. Recovery and recycling of the co-solvent present various challenges, depending upon the type and amount of the co-solvent that is used. For example, glycol solvents are recovered nearly completely within the aqueous product stream, whereas simple alcohols are partitioned between the biocrude and aqueous product streams. In commercial applications, the slight benefits provided by the use of co-solvents must be balanced by the challenges of co-solvent recovery and recycling.
doi:10.3390/en13010124 fatcat:k2o6k7cyhjegfpokeypub4ar7i