Fibonacci Heaps Revisited [article]

Haim Kaplan and Robert E. Tarjan and Uri Zwick
2014 arXiv   pre-print
The Fibonacci heap is a classic data structure that supports deletions in logarithmic amortized time and all other heap operations in O(1) amortized time. We explore the design space of this data structure. We propose a version with the following improvements over the original: (i) Each heap is represented by a single heap-ordered tree, instead of a set of trees. (ii) Each decrease-key operation does only one cut and a cascade of rank changes, instead of doing a cascade of cuts. (iii) The
more » ... es of all comparisons done by the algorithm are explicitly represented in the data structure, so none are wasted. We also give an example to show that without cascading cuts or rank changes, both the original data structure and the new version fail to have the desired efficiency, solving an open problem of Fredman. Finally, we illustrate the richness of the design space by proposing several alternative ways to do cascading rank changes, including a randomized strategy related to one previously proposed by Karger. We leave the analysis of these alternatives as intriguing open problems.
arXiv:1407.5750v1 fatcat:d7v2f4n2sfbpjp66t4onfa4u5q