Imitation Learning for improved 3D PET/MR attenuation correction

Kerstin Kläser, Thomas Varsavsky, Pawel Markiewicz, Tom Vercauteren, Alexander Hammers, David Atkinson, Kris Thielemans, Brian Hutton, M. Jorge Cardoso, Sébastien Ourselin
2021 Medical Image Analysis  
The assessment of the quality of synthesised/pseudo Computed Tomography (pCT) images is commonly measured by an intensity-wise similarity between the ground truth CT and the pCT. However, when using the pCT as an attenuation map (μ-map) for PET reconstruction in Positron Emission Tomography Magnetic Resonance Imaging (PET/MRI) minimising the error between pCT and CT neglects the main objective of predicting a pCT that when used as μ-map reconstructs a pseudo PET (pPET) which is as similar as
more » ... sible to the gold standard CT-derived PET reconstruction. This observation motivated us to propose a novel multi-hypothesis deep learning framework explicitly aimed at PET reconstruction application. A convolutional neural network (CNN) synthesises pCTs by minimising a combination of the pixel-wise error between pCT and CT and a novel metric-loss that itself is defined by a CNN and aims to minimise consequent PET residuals. Training is performed on a database of twenty 3D MR/CT/PET brain image pairs. Quantitative results on a fully independent dataset of twenty-three 3D MR/CT/PET image pairs show that the network is able to synthesise more accurate pCTs. The Mean Absolute Error on the pCT (110.98 HU ± 19.22 HU) compared to a baseline CNN (172.12 HU ± 19.61 HU) and a multi-atlas propagation approach (153.40 HU ± 18.68 HU), and subsequently lead to a significant improvement in the PET reconstruction error (4.74% ± 1.52% compared to baseline 13.72% ± 2.48% and multi-atlas propagation 6.68% ± 2.06%).
doi:10.1016/ pmid:33951598 pmcid:PMC7611431 fatcat:pbcebpg44bdpnp3vfdwstvuddm