Detecting Intentions of Vulnerable Road Users Based on Collective Intelligence [article]

Maarten Bieshaar, Günther Reitberger, Stefan Zernetsch, Bernhard Sick, Erich Fuchs, Konrad Doll
2018 arXiv   pre-print
Vulnerable road users (VRUs, i.e. cyclists and pedestrians) will play an important role in future traffic. To avoid accidents and achieve a highly efficient traffic flow, it is important to detect VRUs and to predict their intentions. In this article a holistic approach for detecting intentions of VRUs by cooperative methods is presented. The intention detection consists of basic movement primitive prediction, e.g. standing, moving, turning, and a forecast of the future trajectory. Vehicles
more » ... pped with sensors, data processing systems and communication abilities, referred to as intelligent vehicles, acquire and maintain a local model of their surrounding traffic environment, e.g. crossing cyclists. Heterogeneous, open sets of agents (cooperating and interacting vehicles, infrastructure, e.g. cameras and laser scanners, and VRUs equipped with smart devices and body-worn sensors) exchange information forming a multi-modal sensor system with the goal to reliably and robustly detect VRUs and their intentions under consideration of real time requirements and uncertainties. The resulting model allows to extend the perceptual horizon of the individual agent beyond their own sensory capabilities, enabling a longer forecast horizon. Concealments, implausibilities and inconsistencies are resolved by the collective intelligence of cooperating agents. Novel techniques of signal processing and modelling in combination with analytical and learning based approaches of pattern and activity recognition are used for detection, as well as intention prediction of VRUs. Cooperation, by means of probabilistic sensor and knowledge fusion, takes place on the level of perception and intention recognition. Based on the requirements of the cooperative approach for the communication a new strategy for an ad hoc network is proposed.
arXiv:1809.03916v1 fatcat:gtc4v42cdbgyfjc4ddwgqriiie