Normalized Google Distance of Multisets with Applications [article]

Andrew R. Cohen , P.M.B. Vitanyi
<span title="2013-08-14">2013</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Normalized Google distance (NGD) is a relative semantic distance based on the World Wide Web (or any other large electronic database, for instance Wikipedia) and a search engine that returns aggregate page counts. The earlier NGD between pairs of search terms (including phrases) is not sufficient for all applications. We propose an NGD of finite multisets of search terms that is better for many applications. This gives a relative semantics shared by a multiset of search terms. We give
more &raquo; ... ns and compare the results with those obtained using the pairwise NGD. The derivation of NGD method is based on Kolmogorov complexity.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1308.3177v1</a> <a target="_blank" rel="external noopener" href="">fatcat:7drxkby2z5hcreqqbetbewwcqq</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>