Stochastic and Nonlinear Dynamics in Low-Temperature Plasmas [chapter]

Aldo Figueroa, Raúl Salgado-García, Jannet Rodríguez, Farook Yousif Bashir, Marco A. Rivera, Federico Vázquez
2016 Plasma Science and Technology - Progress in Physical States and Chemical Reactions  
Low-temperature (LT) plasmas have a substantial role in diverse scientific areas and modern technologies. Their stochastic and nonlinear dynamics strongly determine the efficiency and effectiveness of LT plasma-based procedures involved in applications such as etching, spectrochemical analysis, deposition of thin films on substrates, and others. Understanding and controlling complex behaviors in LT plasmas have become a serious research problem. Modeling their behavior is also a major problem.
more » ... owever, models based on hydrodynamic equations have proven to be useful in their study. In this chapter, we expose the use of fluid models taking into account relevant kinetic processes to describe out from equilibrium LT plasma behavior. Selected topics on the stability, stochastic, and nonlinear dynamics of LT plasmas are discussed. These include the coexistence of diffusive and wave-like particle transport and delayed feedback control of oscillatory regime with relaxation. LTE plasma temperatures range from 5000 K to 20000 K. Low-temperature plasmas, produced in well-known electrode configurations, are not in thermal equilibrium (non-LTE) as each of the species has its own temperature. In these systems, electrons are characterized by their higher temperatures than those of other heavier species (ions, atoms, etc.). The thermodynamic state (thermal plasma or nonthermal plasma) of the plasma mainly depends on its pressure p. This is understood if one considers that in a high-pressure plasma, many collisions occur leading to a more frequent interchange of energy between species than in nonthermal plasmas. The pressure determines not only the thermodynamic state of the plasmas but also the distance d between electrodes. In fact, the product pd can be used to distinguish the thermal and nonthermal states. Besides pressure and electrode separation, the working gas, the applied electric (or electromagnetic) field, and the configuration of the containing device also determine the thermodynamic state of the plasma. Among the wide variety of gas discharges, in this chapter, we will discuss nonthermal plasmas. Among them, we find the following: direct current (DC) glow discharges, capacitively coupled radio-frequency (RF) discharges, pulsed glow discharges, atmospheric pressure glow discharges, corona discharges, dielectric barrier discharges, and magnetron discharges. For an overview of the physical description and applications of both thermal and nonthermal plasmas, see Ref. [1]. A DC glow discharge is a nonthermal plasma wherein the main role is played by electrons. Normally, they have high temperatures which lead to inelastic collisions determining the ionization rate in the system. In fact, these collision processes sustain the plasma. The temperature of heavier particles is lower than that of electrons. Their kinetics has importance in applications such as etching, spectrochemical analysis, and deposition of thin films on substrates through processes such as sputtering, ion implantation, deposition, etc. When one or both of the electrodes are insulating materials, positive or negative charges accumulate and get charged causing plasma annihilation. This process is avoided by introducing an alternating voltage to the electrodes giving rise to the so-called capacitively coupled discharges which are obtained in radio frequencies. This kind of discharge is especially used for the spectrochemical analysis of nonconductive materials or deposition of thin films on dielectric electrodes [2] . If the applied alternating voltage is in the form of pulses, a very similar discharge to DC glow discharge is obtained in a short period of time. In this way, higher peak voltages and currents can be applied, and more efficient sputtering, ionization, and excitation processes are obtained. Because of the existence of lapses of time where the discharge burns out, the pulsed discharges do not excessively heat up in such a way that the temperature of the gas is lower than the electron temperature. This is conducive to the nonthermal state of the plasma. Atmospheric pressure glow discharges occur at higher (e.g., atmospheric) pressures. Increasing the operating pressure makes it necessary to reduce the distance between electrodes in such a way that discharge conditions are maintained. In this kind of discharge, one (or two) electrode is made of a dielectric material, and the device must be operated with an alternating voltage. However, under these operating conditions, a stable glow discharge can be obtained when some working gases (e.g., helium) are used. In other cases (nitrogen, oxygen, argon), it takes the form of a filamentary glow discharge, however, in a stable state. Atmospheric pressure plasmas are especially suitable for the deposi-Plasma Science and Technology -Progress in Physical States and Chemical Reactions 508 Stochastic and Nonlinear Dynamics in Low-Temperature Plasmas http://dx.
doi:10.5772/62096 fatcat:hkzh3kfpxbbchbqkcnvfk5hntu