A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Transfer learning with probabilistic mapping selection
2014
Adaptive Behavior
When transferring knowledge between reinforcement learning agents with different state representations or actions, past knowledge must be efficiently mapped to novel tasks so that it aids learning. The majority of the existing approaches use pre-defined mappings provided by a domain expert. To overcome this limitation and enable autonomous transfer learning, this paper introduces a method for weighting and using multiple inter-task mappings based on a probabilistic framework. Experimental
doi:10.1177/1059712314559525
fatcat:x2v6ugdrlvdkth464cmujpqnnq