Representation of (Left) Ideal Regular Languages by Synchronizing Automata [article]

Marina Maslennikova, Emanuele Rodaro
<span title="2014-12-21">2014</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We follow language theoretic approach to synchronizing automata and Černý's conjecture initiated in a series of recent papers. We find a precise lower bound for the reset complexity of a principal ideal languages. Also we show a strict connection between principal left ideals and synchronizing automata. We characterize regular languages whose minimal deterministic finite automaton is synchronizing and possesses a reset word belonging to the recognized language.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1412.6767v1</a> <a target="_blank" rel="external noopener" href="">fatcat:tc5tjufygjcyhkm4fjjn23h4xa</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>