Limited Set quantifiers over Countable Linear Orderings [chapter]

Thomas Colcombet, A. V. Sreejith
<span title="">2015</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
In this paper, we study several sublogics of monadic secondorder logic over countable linear orderings, such as first-order logic, firstorder logic on cuts, weak monadic second-order logic, weak monadic second-order logic with cuts, as well as fragments of monadic secondorder logic in which sets have to be well ordered or scattered. We give decidable algebraic characterizations of all these logics and compare their respective expressive power.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1007/978-3-662-47666-6_12</a> <a target="_blank" rel="external noopener" href="">fatcat:dv6ak7eqgrh2fhs6ncjafwffve</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>