An Isotope-Dilution Gas Chromatography-Mass Spectrometry Method for Trace Analysis of Xylene Metabolites in Tissues

K. H. Pyon, D. A. Kracko, M. R. Strunk, W. E. Bechtold, A. R. Dahl, J. L. Lewis
1997 Journal of Analytical Toxicology  
A gas chromatography-mass spectrometry (GC-MS) method using isotope dilution was developed to measure trace levels of xylene metabolites in brain tissues. The primary metabolites of xylene are dimethylphenol (DMP), methylbenzyl alcohol (MBA), toluic acid (TA), and methylhippuric acid (MHA). The internal standard was a mixture of deuterated DMP-d3, TA-dT, and MHA-dT. DMP-d3 was commercially available and was used as the internal standard for both DMP and MBA. TA-d7 and/VIHA-d7 were
more » ... by administering xylene-dl0 to rats and collecting their urine. Based on the noise peaks in 10 blank samples, the on-column limits of quantitation (mean + 10 SD of noise peaks) were approximately 305, 1220, 545, and 386 pg for DMP, MBA, TA, and MHA, respectively. Analyte detection and recovery tests from brain tissues of control rats were conducted by spiking the tissues with 32 nmol/g of each analyte, together with the deuterated metabolites. The tissues were homogenized, extracted with ethyl acetate, and derivatized by trimethylsilylation. One microliter of the sample was injected into the GC-MS. The recoveries of the analytes were 104 • 8%, B0 • 9%, 93 • 10%, and 92 • 11% (mean • SD, n = 7) for DMP, MBA, TA, and MHA, respectively. The tissue preparation efficiency, which was indicated by absolute recoveries of internal standards, was approximately 33% for DMP, MBA, and TA and approximately 80% for MHA. No metabolites were detected in untreated control tissues. This simple and sensitive method to simultaneously detect major xylene metabolites in brain tissues could also be used for the analysis of blood and urine samples from workers to monitor p-xylene exposure.
doi:10.1093/jat/21.5.363 pmid:9288588 fatcat:cr5gsqhnvngwpcmeqcdj33u2cy