CaSpER: Identification, visualization and integrative analysis of CNV events in multiscale resolution using single-cell or bulk RNA sequencing data [article]

Akdes Serin Harmanci, Arif O Harmanci, Xiaobo Zhou
2018 bioRxiv   pre-print
RNA sequencing experiments generate large amounts of information about expression levels of genes. Although they are mainly used for quantifying expression levels, they contain much more biologically important information such as copy number variants (CNV). Here, we propose CaSpER, a signal processing approach for identification, visualization, and integrative analysis of focal and large-scale CNV events in multiscale resolution using either bulk or single-cell RNA sequencing data. CaSpER
more » ... ms smoothing of the genome-wide RNA sequencing signal profiles in different multiscale resolutions, identifying CNV events at different length scales. CaSpER also employs a novel methodology for generation of genome-wide B-allele frequency (BAF) signal profile from the reads and utilizes it in multiscale fashion for correction of CNV calls. The shift in allelic signal is used to quantify the loss-of-heterozygosity (LOH) which is valuable for CNV identification. CaSpER uses Hidden Markov Models (HMM) to assign copy number states to regions. The multiscale nature of CaSpER enables comprehensive analysis of focal and large-scale CNVs and LOH segments. CaSpER performs well in accuracy compared to gold standard SNP genotyping arrays. In particular, analysis of single cell Glioblastoma (GBM) RNA sequencing data with CaSpER reveals novel mutually exclusive and co-occurring CNV sub-clones at different length scales. Moreover, CaSpER discovers gene expression signatures of CNV sub-clones, performs gene ontology (GO) enrichment analysis and identifies potential therapeutic targets for the sub-clones. CaSpER increases the utility of RNA-sequencing datasets and complements other tools for complete characterization and visualization of the genomic and transcriptomic landscape of single cell and bulk RNA sequencing data, especially in cancer research.
doi:10.1101/426122 fatcat:mwilqxwqanhtdiduu7vf474woy