A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Using AUC and accuracy in evaluating learning algorithms
2005
IEEE Transactions on Knowledge and Data Engineering
The area under the ROC (Receiver Operating Characteristics) curve, or simply AUC, has been recently proposed as an alternative single-number measure for evaluating the predictive ability of learning algorithms. However, no formal arguments were given as to why AUC should be preferred over accuracy. In this paper, we establish formal criteria for comparing two different measures for learning algorithms, and we show theoretically and empirically that AUC is, in general, a better measure (defined
doi:10.1109/tkde.2005.50
fatcat:f2qdpgcxs5e3npeqwrmekpdqla