Output Voltage Synthesis of a Modular Battery System based on a Cascaded H-Bridge Multilevel Inverter Topology for Vehicle Propulsion: Multilevel Pulse Width Modulation vs. Fundamental Selective Harmonic Elimination

Anton Kersten, Lukas Baum, Weiji Han, Torbjorn Thiringer, Massimo Bongiorno
2020 2020 IEEE Transportation Electrification Conference & Expo (ITEC)  
Lately, the research interest for modular battery systems has increased due to the possibility of a better utilization of individual battery packs/cells and the steadily reducing costs of low voltage power electronics. This paper deals with the output voltage synthesis of a modular battery system based on a seven level Cascaded H-bridge (CHB) inverter topology used in a small passenger vehicle. Two methods are considered, Multilevel Pulse Width Modulation (MPWM) and Fundamental Selective
more » ... c Elimination (FSHE). Using simulations, the inverter and battery losses, as well as the current THD, are used to assess the effectiveness of both techniques for the broad operating range of a vehicle's drivetrain. It has been shown that FSHE cannot be applied at a modulation index below 0.25, because of the high current THD (>>5%). Exceeding a modulation index of 0.25, FSHE reduces the battery and inverter losses in comparison to MPWM, while maintaining an acceptable current THD. Operating at higher speeds, FSHE achieves an even better current THD than MPWM. Consequently, it seems reasonable to use a hybrid modulation technique, using MPWM at low and FSHE at higher speeds, respectively. The exact boundary between MPWM and FSHE can vary in accordance with the individual optimization weightings of current THD and drivetrain efficiency.
doi:10.1109/itec48692.2020.9161658 fatcat:fezwbizxn5fl5bknbhuqdq5x7i