Training a digital model of a deep spiking neural network using backpropagation

V Bondarev, V. Breskich, A. Zheltenkov, Y. Dreizis
<span title="">2020</span> <i title="EDP Sciences"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/wehsdgmkgvabfewguumql7pepe" style="color: black;">E3S Web of Conferences</a> </i> &nbsp;
Deep spiking neural networks are one of the promising eventbased sensor signal processing concepts. However, the practical application of such networks is difficult with standard deep neural network training packages. In this paper, we propose a vector-matrix description of a spike neural network that allows us to adapt the traditional backpropagation algorithm for signals represented as spike time sequences. We represent spike sequences as binary vectors. This enables us to derive expressions
more &raquo; ... or the forward propagation of spikes and the corresponding spike training algorithm based on the back propagation of the loss function sensitivities. The capabilities of the proposed vector-matrix model are demonstrated on the problem of handwritten digit recognition on the MNIST data set. The classification accuracy on test data for spiking neural network with 3 hidden layers is equal to 98.14%.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1051/e3sconf/202022401026">doi:10.1051/e3sconf/202022401026</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/5tm4h55iunbxblhnupsbi7gbjq">fatcat:5tm4h55iunbxblhnupsbi7gbjq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201230235105/https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/84/e3sconf_TPACEE2020_01026.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/8c/0e/8c0eec972a68438887bf8d254718a17680a55157.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1051/e3sconf/202022401026"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>