E2DR: A Deep Learning Ensemble-Based Driver Distraction Detection with Recommendations Model

Mustafa Aljasim, Rasha Kashef
2022 Sensors  
The increasing number of car accidents is a significant issue in current transportation systems. According to the World Health Organization (WHO), road accidents are the eighth highest top cause of death around the world. More than 80% of road accidents are caused by distracted driving, such as using a mobile phone, talking to passengers, and smoking. A lot of efforts have been made to tackle the problem of driver distraction; however, no optimal solution is provided. A practical approach to
more » ... ving this problem is implementing quantitative measures for driver activities and designing a classification system that detects distracting actions. In this paper, we have implemented a portfolio of various ensemble deep learning models that have been proven to efficiently classify driver distracted actions and provide an in-car recommendation to minimize the level of distractions and increase in-car awareness for improved safety. This paper proposes E2DR, a new scalable model that uses stacking ensemble methods to combine two or more deep learning models to improve accuracy, enhance generalization, and reduce overfitting, with real-time recommendations. The highest performing E2DR variant, which included the ResNet50 and VGG16 models, achieved a test accuracy of 92% as applied to state-of-the-art datasets, including the State Farm Distracted Drivers dataset, using novel data splitting strategies.
doi:10.3390/s22051858 pmid:35271004 pmcid:PMC8914716 fatcat:ju7sp4erdzbcrbipqmhco7wf4q