ROS Generated by Upconversion Nanoparticle-Mediated Photodynamic Therapy Induces Autophagy via PI3K/AKT/Mtor Signaling Pathway in M1 Peritoneal Macrophage

2019 Cellular Physiology and Biochemistry  
Atherosclerosis is a chronic inflammatory cardiovascular disease. Macrophages are major components of atherosclerotic plaques and play a key role in the development of atherosclerosis by secreting a variety of pro-inflammatory factors. Our previous studies have confirmed that upconversion nanoparticles encapsulating chlorin e6 (UCNPs-Ce6) mediated photodynamic therapy (PDT) can promote cholesterol efflux and induce apoptosis in THP-1 macrophages. In this study, we investigated whether reactive
more » ... xygen species (ROS) generated by UCNPs-Ce6-mediated PDT can induce autophagy to inhibit the expression of pro-inflammatory factor in M1 peritoneal macrophages. Peritoneal macrophages were collected from C57/BL6 mice injected with 3% thioglycollate broth medium and induced by lipopolysaccharides and interferon-γ. Intracellular ROS production was assessed by 2'-7'-dichloroflorescein diacetate and flow cytometry. Autophagy was assayed by western blot, transmission electron microscopy and immunofluorescence. Pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay and western blot. Model M1 peritoneal macrophages were established after 24 h induction. Protein expression levels of LC3 II and Beclin1, and degradation of p62 increased and peaked at 2 h in the PDT group. Meanwhile, levels of inflammatory cytokines iNOS, IL-12, and TNF-α markedly decreased after PDT. The increase in autophagy levels and decrease in pro-inflammatory cytokines were significantly inhibited by 3-methyladenine. Furthermore, ROS generated by UCNPs- Ce6 mediated PDT activated autophagy. The expression of autophagy related-protein and inflammatory cytokines iNOS, IL-12, and TNF-α were inhibited by the ROS inhibitor N-acetyl cysteine. ROS generated by UCNPs-Ce6-mediated PDT activated autophagy and inhibited the expression of pro-inflammatory factors of M1 peritoneal macrophage via the PI3K/AKT/mTOR signaling pathway.
doi:10.33594/000000093 pmid:31050281 fatcat:5k2vc6pawnefxojma4aejdje7a