Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition

B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke
2005 Journal of Applied Physics  
The resistive switching mechanism of 20-to 57-nm-thick TiO 2 thin films grown by atomic-layer deposition was studied by current-voltage measurements and conductive atomic force microscopy. Electric pulse-induced resistance switching was repetitively ͑Ͼ a few hundred times͒ observed with a resistance ratio ӷ10 2 . Both the low-and high-resistance states showed linear log current versus log voltage graphs with a slope of 1 in the low-voltage region where switching did not occur. The thermal
more » ... ity of both conduction states was also studied. Atomic force microscopy studies under atmosphere and high-vacuum conditions showed that resistance switching is closely related to the formation and elimination of conducting spots. The conducting spots of the low-resistance state have a few tens times higher conductivity than those of the high-resistance state and their density is also a few tens times higher which results in a ϳ10 3 times larger overall conductivity. An interesting finding was that the area where the conducting spots do not exist shows a few times different resistance between the low-and high-resistance state films. It is believed that this resistance change is due to the difference in point defect density that was generated by the applied bias field. The point defects possibly align to form tiny conducting filaments in the high-resistance state and these tiny conducting filaments gather together to form stronger and more conducting filaments during the transition to the low-resistance state.
doi:10.1063/1.2001146 fatcat:rn3a5iku3fajnlyxsuv55qo7he