
EXPECTED DRAWDOWNS

CENGIZ Y. BELENTEPE

Abstract. How does one estimate what an investment’s expected drawdown
will be by using just the average and standard deviation of the investment’s
performance? Can one use diversification to reduce the expected drawdown
of one’s investments? In this article, we address and answer both of these
questions. In fact, we provide several practical ideas and formulas which may
assist one in the active management of their portfolios.

1. Motivation

One only need spend a short amount of time in the asset management industry
to realize that the concept of drawdown is paramount to investors. The current
drawdown of an investment with price process {Pt : 0 ≤ t ≤ T} is defined by

Dt = 1− Pt/ max
0≤s≤t

Ps,

and Dt is a quantity of great concern to investors. It represents the fraction of one’s
wealth that has been lost since the investment was at its peak. In some ways, it
reflects how much regret we have for not having exited our investment at an earlier,
more fortuitous time.

To gain insight into the properties of drawdown, we consider the simplest invest-
ment model, geometric Brownian motion. We then consider two tasks. Our first
task is to calculate the expected current drawdown of our investment which will
provide investors with a benchmark for drawdown risk. Our second task is to see
how diversification can help control the expected current drawdown.

2. Distributions and densities

Before making any probabilistic statements about drawdowns, we must first
define the stochastic differential equation that describes our investment model.
Letting µ denote a constant drift rate and σ2 denote an instantaneous variance, we
assume our investment Pt satisfies the stochastic differential equation

dPt = µPtdt + σPtdBt

where Bt is standard Brownian motion. The solution to this stochastic differential
equation is known to be

Pt = P0 exp
{(

µ− 1
2
σ2

)
t + σBt

}
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and without loss of generality we assume our initial investment is $1, i.e. P0 = 1.
Letting

Xt = rt + σBt, r
def= µ− 1

2
σ2

Yt = max{Xs : s ∈ [0, t]},
we can rewrite Dt as

Dt = 1− eXt

eYt
= 1− eXt−Yt .

From the reflection principle for Brownian motion the joint distribution of (Xt, Yt)
when y ≥ x and y ≥ 0 is known to be

P (Xt ≤ x, Yt ≤ y) = Φ
(

x− rt

σ
√

t

)
− exp

{
2ry

σ2

}
Φ

(
x− 2y − rt

σ
√

t

)
,

as one finds, for example, in Harrison ([1], pp 22). Differentiating twice, one has
the joint density of (Xt, Yt) as

fXt,Yt(x, y) =
1√

2πσ2t
exp

(
2ry
σ2

− (x− 2y − rt)2

2σ2t

) [
2(2y + rt− x)

σ2t
− 2r

σ2

]

which allows us to compute P (Dt ≥ 1 − α) for 0 ≤ α ≤ 1. In fact, we get a nice
formula for calculating the probability of a drawdown exceeding a specific level

P (Dt ≥ 1− α) = P (1− eXt−Yt ≥ 1− α) = P (eXt−Yt ≤ α)
= 1− P (Yt −Xt ≤ − log α)

= 1−
∫ ∞

0

∫ y

y+log α

exp
(

2ry
σ2 − (x−2y−rt)2

2σ2t

)
√

2πσ2t

[
2(2y + rt− x)

σ2t
− 2r

σ2

]
dxdy

= 1− Φ
(− log α + rt

σ
√

t

)
− α

2r
σ2

[
Φ

(− log α− rt

σ
√

t

)
− 1

]
.

3. Expected drawdown percentage

Noticing that E(Dt) = 1−E(eXt−Yt), we use the distribution for eXt−Yt that we
just calculated to derive its density and integrate for E(Dt). The density of eXt−Yt

is

f(α) =
d

dα
P (eXt−Yt ≤ α)

=
1

α
√

2πσ2t
exp

(
− (− log α + rt)2

2tσ2

)
+

α
2r
σ2−1

√
2πσ2t

exp
(
− (log α + rt)2

2tσ2

)

+
2r

σ2
α

2r
σ2−1 − 2r

σ2
α

2r
σ2−1Φ

(− log α− rt

σ
√

t

)
,

so
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E(Dt) = 1− E(eXt/eYt) = 1−
∫ 1

0

αf(α)dα

= 1−
2rΦ

(
r
√

t
σ

)
+ 2 exp

(
rt + σ2t

2

) (
r + σ2

)
Φ

(
−
√

t(r+σ2)
σ

)

2r + σ2
.(3.1)

This formula for E(Dt) permits an investor to relate µ, σ and t to a drawdown
percentage by recalling that r is defined as µ−σ2/2. Likewise, carrying out similar
calculations, the variance of Dt can be shown to be

Var(Dt) =
2rΦ

(
r
√

t
σ

)
+ 2 exp

(
2rt + 2σ2t

) (
r + 2σ2

)
Φ

(
−
√

t(r+2σ2)
σ

)

2(r + σ2)

−

2rΦ

(
r
√

t
σ

)
+ 2 exp

(
rt + σ2t

2

) (
r + σ2

)
Φ

(
−
√

t(r+σ2)
σ

)

2r + σ2




2

.

A natural question after looking at Equation (3.1) is what happens as we let t
approach infinity. Using the following bounds on the tail probability of a Gaussian
random variable Z

1√
2π

1
z + 1/z

exp
(
−z2

2

)
≤ Φ(−z) ≤ 1√

2π

1
z

exp
(
−z2

2

)
, z ≥ 0.

we can answer this if care is taken to consider three distinct regions : r + σ2 ≤
0, 0 ≤ r + σ2 ≤ σ2, r > 0 . Making use of the preceding inequality when relevant
we have

lim
t→∞

E(Dt) = 1− lim
t→∞

2rΦ
(

r
√

t
σ

)
+ 2 exp

(
rt + σ2t

2

) (
r + σ2

)
Φ

(
−
√

t(r+σ2)
σ

)

2r + σ2

=

{
1 µ ≤ σ2/2

σ2

2r+σ2 = σ2

2µ µ > σ2/2.

Figure (1) displays the expected drawdown for various levels of σ and t and exhibits
this limiting behavior. A similar calculation shows that

lim
t→∞

Var(Dt) =

{
0 µ ≤ σ2/2

r
r+σ2 −

(
2r

2r+σ2

)2

µ > σ2/2.

4. Controlling drawdown

What are the implications of this for an investor faced with the opportunity to
invest in any of k independent investments? In particular, consider k independent
investments, each of which follow geometric Brownian motion with constant drift
rate µ and instantaneous variance σ2. Letting Pi,t denote an investment in the ith

investment, we assume each of our investments Pi,t satisfy the stochastic differential
equation

dPi,t = rPi,tdt + σPi,tdBi,t, i = 1, . . . , k
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Figure 1. Expected drawdown E(Dt) and dependence on σ and t.

where Bi,t are standard Brownian motions independent of one another.
Within this setup, an investor who decides to buy and hold 1/kth of his wealth

in each of the k investments would have the following wealth process at time t

Wt =
1
k

k∑

i=1

Pi,t.

At which point we could easily be stumped. After all, it is an unfortunate fact that
the arithmetic average of k geometric Brownian motions is not itself a geometric
Brownian motion. Practitioners of continuous time finance have been presented
with this very same problem under the guise of pricing index options. Index options
are nothing more than the option to buy or sell an arithmetic weighted portfolio of
individual assets at a certain strike price. Their solution is the following – match
moments between the true process Wt and a geometric Brownian motion W ′

t meant
to approximate the true process and solve for the r′ and σ′2 of this new geometric
Brownian motion. It turns out that solving the system of equations consequent
from

E(Wt) = E(W ′
t )

exp
(

rt +
σ2t

2

)
= exp

(
r′t +

σ′2t
2

)
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and

Var(Wt) = Var(W ′
t )

1
k

Var(Pt) = e2r′t+σ′2t
(
eσ′2t − 1

)

1
k

e2rt+σ2t
(
eσ2t − 1

)
= e2r′t+σ′2t

(
eσ′2t − 1

)

leads to the parameters of our new geometric Brownian motion W ′
t as

σ′2 = log

(
1− 1

k
+

eσ2

k

)

r′ =
2r + σ2 − log

(
1− 1

k + eσ2

k

)

2
Now in order to see the expected percentage drawdown from investing in k inde-
pendent investments, plug these values of r′ and σ′2 back into Equation (3.1). In
other words, E(Dk,t) equals

1−
2r′Φ

(
r′
√

t
σ′

)
+ 2 exp

(
r′t + σ′2t

2

) (
r′ + σ′2

)
Φ

(
−
√

t(r′+σ′2)
σ′

)

2r′ + σ′2
.(4.1)

where Dk,t is the drawdown percentage when we buy and hold an equal fraction
1/k in each of our k independent investments.

5. Simulations

The moment matching method is short on formal justifications, but by simula-
tions one finds that it performs rather well. Table (1) gives the average percentage
drawdown and the standard deviation of the drawdown from 10,000 simulations
with r = .0004, σ = .01897 and t = 2500 as well as the values of E(Dk,2500) derived
from Equation (4.1). This choice of r, σ and t is the daily equivalent of 10% annual
return and 30% annual volatility over a ten year period. Figure (2) displays the
histogram of drawdown percentages from this simulation.

The table informs us that the investor with 8 investments as opposed to only 1
investment achieves a nearly 80% reduction in his expected drawdown. Moreover,
he achieves a 70% reduction in the standard deviation of this drawdown. So not
only does he have lower drawdowns, but he also has less uncertainty as to what
these drawdowns will be. Clearly, diversification has a powerful impact on one’s
portfolio.

k Simulation Moment Approximated
D̄k,2500 E(Dk,2500)

1 .27 .28
2 .17 .15
4 .10 .07
8 .06 .04

k Simulation Moment Approximated
SDk,2500 σDk,2500

1 .21 .21
2 .14 .13
4 .09 .07
8 .06 .04

Table 1. Comparing the mean and standard deviations of Dk,t

from simulation and approximation.
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Figure 2. Histogram of simulation

6. Conclusion

The implications of this are clear - drawdown can be minimized by having mul-
tiple strategies on one asset or one strategy on multiple assets. Due to the assump-
tions we have made to calculate expected drawdowns, one should use our results
in the following manner. Find how many strategies are required to give you your
desired expected current drawdown E(Dk,t) and realize this number, k, will most
likely be the minimum number of strategies required in real life.
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