Two-stage methods for multimodal optimization

Simon Wessing, Technische Universität Dortmund, Technische Universität Dortmund
2015
Für viele praktische Optimierungsprobleme ist es ratsam nicht nur eine einzelne optimale Lösung zu suchen, sondern eine Menge von Lösungen die gut und untereinander verschieden sind. Die Argumentation hinter dieser Meinung ist, dass ein Entscheidungsträger möglicherweise nachträglich zusätzliche Kriterien einbringen möchte, die nicht im Optimierungsproblem enthalten waren. Gründe für die Nichtberücksichtigung im Optimierungsproblem sind zum Beispiel dass das notwendige Expertenwissen noch nicht
more » ... formalisiert wurde, oder dass die Bewertung der Zusatzkriterien mehr oder weniger subjektiv abläuft. Das Forschungsgebiet für diese einkriteriellen Optimierungsprobleme mit Bedarf für eine Menge von mehreren Lösungen wird momentan mit dem Begriff multimodale Optimierung umschrieben. In dieser Arbeit wenden wir zweistufige Optimieralgorithmen, die aus sich abwechselnden globalen und lokalen Komponenten bestehen, auf diese Probleme an. Diese Algorithmen sind attraktiv für uns wegen ihrer Einfachheit und ihrer belegten Leistungsfähigkeit auf multimodalen Problemen. Das Hauptaugenmerk liegt darauf, die globale Phase zu verbessern, da lokale Suche schon ein gut erforschtes Themengebiet ist. Wir tun dies, indem wir vorher ausgewertete Punkte und bereits bekannte Optima in unserem globalen Samplingalgorithmus berücksichtigen. Unser Ansatz basiert auf der Maximierung der minimalen Distanz in einer Punktmenge, während Kanteneffekte, welche durch die Beschränktheit des Suchraums verursacht werden, durch geeignete Korrekturmaßnahmen verhindert werden. Experimente bestätigen die Überlegenheit dieses Algorithmus gegenüber zufällig gleichverteiltem Sampling und anderen Methoden in diversen Problemstellungen multimodaler Optimierung.
doi:10.17877/de290r-7804 fatcat:3uwk7nkbcjebrcxlgi45utufzi